55,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
28 °P sammeln
  • Broschiertes Buch

The complexity and vulnerability of the human body has driven the development of a diverse range of diagnostic and therapeutic techniques in modern medicine. The Nuclear Medicine procedures of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and Radionuclide Therapy are well-established in clinical practice and are founded upon the principles of radiation physics. This book will offer an insight into the physics of nuclear medicine by explaining the principles of radioactivity, how radionuclides are produced and administered as radiopharmaceuticals to the…mehr

Produktbeschreibung
The complexity and vulnerability of the human body has driven the development of a diverse range of diagnostic and therapeutic techniques in modern medicine. The Nuclear Medicine procedures of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and Radionuclide Therapy are well-established in clinical practice and are founded upon the principles of radiation physics. This book will offer an insight into the physics of nuclear medicine by explaining the principles of radioactivity, how radionuclides are produced and administered as radiopharmaceuticals to the body and how radiation can be detected and used to produce images for diagnosis. The treatment of diseases such as thyroid cancer, hyperthyroidism and lymphoma by radionuclide therapy will also be explored.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Doctor Laura Harkness-Brennan is a Senior Lecturer in the Department of Physics at the University of Liverpool, where she teaches undergraduate and postgraduate courses in medical physics and nuclear instrumentation. She completed her PhD in 2010, and in the same year, she received the Shell and Institute of Physics Women in Physics Very Early Career Award. She now leads a team of researchers developing novel radiation detection and imaging techniques for medical physics and nuclear structure physics experiments.