Gouging is a type of structural failure that becomes important when two metals slide against each other at velocities in the range of 1.5 kilometers per second. A computer model has previously been used to model the development of gouging at the Holloman High Speed Test Track. This model has not been experimentally verified to be correct, due to the complexity of the model. This research develops a simplified model that can be experimentally verified. The computer program utilized in this research was studied to determine the most appropriate options to use in simulations. This was accomplished by modeling a Taylor impact test and comparing to published experimental results. The cylindrical impact specimen utilized in the simplified model was developed through use of the Buckingham-Pi theorem, and can be fired from most standard compressed air guns. Simulations using the simplified model showed excellent agreement with simulations using the physical sled properties. Plasticity observed in both the rod and target was very similar to that seen in the physical sled simulations. The high- pressure core, which initiates gouging in the physical sled simulation, was found to exist in the simplified model as well.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.