76,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
38 °P sammeln
  • Broschiertes Buch

The Rogers--Ramanujan identities are a pair of infinite series-infinite product identities that were first discovered in 1894. Over the past several decades these identities, and identities of similar type, have found applications in number theory, combinatorics, Lie algebra and vertex operator algebra theory, physics (especially statistical mechanics), and computer science (especially algorithmic proof theory). Presented in a coherant and clear way, this will be the first book entirely devoted to the Rogers-Ramanujan identities and will include related historical material that is unavailable elsewhere.…mehr

Produktbeschreibung
The Rogers--Ramanujan identities are a pair of infinite series-infinite product identities that were first discovered in 1894. Over the past several decades these identities, and identities of similar type, have found applications in number theory, combinatorics, Lie algebra and vertex operator algebra theory, physics (especially statistical mechanics), and computer science (especially algorithmic proof theory). Presented in a coherant and clear way, this will be the first book entirely devoted to the Rogers-Ramanujan identities and will include related historical material that is unavailable elsewhere.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Andrew Sills obtained his Ph.D. in 2002 from the University of Kentucky under. George E. Andrews, Evan Pugh Professor of Mathematics, Pennsylvania State University. He was Hill Assistant Professor of Mathematics, at Rutgers University between 2003- 2007 and a Tenure-track Assistant Professor at Georgia Southern University between 2007-2011. Since 2011 he has been Associate Professor of Mathematics at Georgia Southern, becoming a full Professor of Mathematics, effective August 1, 2015. He is a permanent Member of DIMACS (Center for Discrete Mathematics and Computer Science), since 2011. Research Grant: "Computer Assisted Research in Additive and Combinatorial Number Theory and Allied Areas," National Security Agency Grant, 2014-2015.