Analog design at ultra-low supply voltages is an important challenge for the semiconductor research community and industry.
Analog Circuit Design Techniques at 0.5V covers challenges for the design of MOS analog and RF circuits at a 0.5 V power supply voltage. All design techniques presented are true low voltage techniques - all nodes in the circuits are within the power supply rails. The circuit implementations of body and gate input fully differential amplifiers are also discussed. These building blocks enable us to build continuous-time filters, track-and-hold circuits, and continuous-time sigma delta modulators.
Current books on low voltage analog design typically cover techniques for supply voltages down to approximately 1V. This book presents novel ideas and results for operation from much lower supply voltages and the techniques presented are basic circuit techniques that are widely applicable beyond the scope of the presented examples.
Analog Circuit Design Techniques at 0.5V is written for analog circuit designers and researchers as well as graduate students studying semiconductors and integrated circuit design.
Analog Circuit Design Techniques at 0.5V covers challenges for the design of MOS analog and RF circuits at a 0.5 V power supply voltage. All design techniques presented are true low voltage techniques - all nodes in the circuits are within the power supply rails. The circuit implementations of body and gate input fully differential amplifiers are also discussed. These building blocks enable us to build continuous-time filters, track-and-hold circuits, and continuous-time sigma delta modulators.
Current books on low voltage analog design typically cover techniques for supply voltages down to approximately 1V. This book presents novel ideas and results for operation from much lower supply voltages and the techniques presented are basic circuit techniques that are widely applicable beyond the scope of the presented examples.
Analog Circuit Design Techniques at 0.5V is written for analog circuit designers and researchers as well as graduate students studying semiconductors and integrated circuit design.