27,95 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
  • Broschiertes Buch

Studienarbeit aus dem Jahr 2013 im Fachbereich Informatik - Wirtschaftsinformatik, Note: 1,7, Fachhochschule Stralsund, Veranstaltung: Quantitative Methoden II, Sprache: Deutsch, Abstract: In dieser Arbeit werden monatliche Daten bezüglich des Stromumsatzes und -verbrauchs der US-Bundesstaten Arkansas und Michigan im Zeitraum von Januar 1990 bis Juni 2012 analysiert. Ziel dieser Untersuchungen ist es, möglichst genaue Prognosen für die Stromumsatz- und Stromverbrauchsentwicklung aufstellen zu können. Dies geschieht unter Verwendung der Softwarepakete EViews, SPSS und GiveWin2/STAMP.Nachdem im…mehr

Produktbeschreibung
Studienarbeit aus dem Jahr 2013 im Fachbereich Informatik - Wirtschaftsinformatik, Note: 1,7, Fachhochschule Stralsund, Veranstaltung: Quantitative Methoden II, Sprache: Deutsch, Abstract: In dieser Arbeit werden monatliche Daten bezüglich des Stromumsatzes und -verbrauchs der US-Bundesstaten Arkansas und Michigan im Zeitraum von Januar 1990 bis Juni 2012 analysiert. Ziel dieser Untersuchungen ist es, möglichst genaue Prognosen für die Stromumsatz- und Stromverbrauchsentwicklung aufstellen zu können. Dies geschieht unter Verwendung der Softwarepakete EViews, SPSS und GiveWin2/STAMP.Nachdem im ersten Kapitel eine kurze Einführung in die Thematik gegeben wurde, beschäftigt sich das zweite Kapitel mit der Beschreibung der untersuchten Zeitreihen. Zudem werden die Daten für die folgenden Untersuchungen vorbereitet. Dies betrifft eventuell vorhandene Ausreißer in den Datenbeständen, die durch Mittelwertbildung bereinigt werden. Im anschließenden Kapitel werden mit Hilfe von UC- und ARIMA-Modellen Prognoseformeln entwickelt. Außerdem sollen die Umsatz- und Absatzreihen auf Kointegration hin untersucht werden. Die Güte der Modelle wird anhand von Detailprognosen und Fehlerrechnungen bewertet. Am Ende der Arbeit werden alle gesammelten Ergebnisse zusammengefasst kurz interpretiert.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.