Analysis and Design of MOSFETs: Modeling, Simulation, and Parameter Extraction is the first book devoted entirely to a broad spectrum of analysis and design issues related to the semiconductor device called metal-oxide semiconductor field-effect transistor (MOSFET). These issues include MOSFET device physics, modeling, numerical simulation, and parameter extraction. The discussion of the application of device simulation to the extraction of MOSFET parameters, such as the threshold voltage, effective channel lengths, and series resistances, is of particular interest to all readers and provides…mehr
Analysis and Design of MOSFETs: Modeling, Simulation, and ParameterExtraction is the first book devoted entirely to a broad spectrum of analysis and design issues related to the semiconductor device called metal-oxide semiconductor field-effect transistor (MOSFET). These issues include MOSFET device physics, modeling, numerical simulation, and parameter extraction. The discussion of the application of device simulation to the extraction of MOSFET parameters, such as the threshold voltage, effective channel lengths, and series resistances, is of particular interest to all readers and provides a valuable learning and reference tool for students, researchers and engineers. Analysis and Design of MOSFETs: Modeling, Simulation, and ParameterExtraction, extensively referenced, and containing more than 180 illustrations, is an innovative and integral new book on MOSFETs design technology.
1. MOSFET physics and modeling.- 1.1 MOSFET evolution and its integrated circuits.- 1.2 MOS fundamentals.- 1.3 Concept and operation of MOSFETs.- 1.4 Modeling of conventional MOSFETs.- 1.5 Short-channel effects.- 1.6 Narrow-channel effects.- 1.7 Hot-carrier effects.- 1.8 Quantum mechanical effects in deep-submicron MOS devices.- 1.9 Modeling the lightly-doped-drain (LDD) MOSFET.- 1.10 Modeling the silicon-on-insulator (SOI) MOSFET.- References.- 2. MOSFET simulation using device simulators.- 2.1 Introduction to device simulators.- 2.2 Description of MEDICI device simulator.- 2.3 Numerical algorithms.- 2.4 Grid in MEDICI.- 2.5 Example of MOSFET simulation.- 2.6 Three-dimensional device simulation.- References.- 3. Extraction of the threshold voltage of MOSFETs.- 3.1 Existing methods for extracting the threshold voltage.- 3.2 Improved threshold voltage extraction method.- 3.3 Threshold voltage shift reversal in short-channel MOSFETs.- 3.4 Threshold voltage shift due to quantum mechanical effects.- References.- 4. Methods for extracting the effective channel length of MOSFETs.- 4.1 Introduction.- 4.2 Current-voltage methods.- 4.3 Capacitance-voltage method.- 4.4 Simulation-based method.- 4.5 Comparison of various extraction methods.- References.- 5. Extraction of the source and drain series resistances of MOSFETs.- 5.1 Introduction.- 5.2 Extraction of total drain and source series resistance.- 5.3 Difference in drain and source series resistances.- 5.4 Physical mechanisms contributing to the drain and source asymmetry.- References.- 6. Parameter extraction of lightly-doped drain (LDD) MOSFETs.- 6.1 Validity of the I-V extraction method for LDD MOSFETs.- 6.2 Bias-dependent effective channel length and series resistance.- 6.3 Constant effective channel length determination method.- 6.4 Capacitance-based metallurgical channel length determination method.- 6.5 Drain and source resistances of LDD MOSFETs.- 6.6 Gate-oxide thickness dependence of LDD MOSFET parameters.- References.- Appendices.- Appendix A Physical constants and unit conversions.- Appendix B Properties of germanium, silicon, and gallium arsenide (at 300 K).- Appendix C Properties of Si02 and Si3N4 (at 300 K).- Appendix D Derivation of the integral function and its applications to parameter extraction.- About the authors.
1. MOSFET physics and modeling.- 1.1 MOSFET evolution and its integrated circuits.- 1.2 MOS fundamentals.- 1.3 Concept and operation of MOSFETs.- 1.4 Modeling of conventional MOSFETs.- 1.5 Short-channel effects.- 1.6 Narrow-channel effects.- 1.7 Hot-carrier effects.- 1.8 Quantum mechanical effects in deep-submicron MOS devices.- 1.9 Modeling the lightly-doped-drain (LDD) MOSFET.- 1.10 Modeling the silicon-on-insulator (SOI) MOSFET.- References.- 2. MOSFET simulation using device simulators.- 2.1 Introduction to device simulators.- 2.2 Description of MEDICI device simulator.- 2.3 Numerical algorithms.- 2.4 Grid in MEDICI.- 2.5 Example of MOSFET simulation.- 2.6 Three-dimensional device simulation.- References.- 3. Extraction of the threshold voltage of MOSFETs.- 3.1 Existing methods for extracting the threshold voltage.- 3.2 Improved threshold voltage extraction method.- 3.3 Threshold voltage shift reversal in short-channel MOSFETs.- 3.4 Threshold voltage shift due to quantum mechanical effects.- References.- 4. Methods for extracting the effective channel length of MOSFETs.- 4.1 Introduction.- 4.2 Current-voltage methods.- 4.3 Capacitance-voltage method.- 4.4 Simulation-based method.- 4.5 Comparison of various extraction methods.- References.- 5. Extraction of the source and drain series resistances of MOSFETs.- 5.1 Introduction.- 5.2 Extraction of total drain and source series resistance.- 5.3 Difference in drain and source series resistances.- 5.4 Physical mechanisms contributing to the drain and source asymmetry.- References.- 6. Parameter extraction of lightly-doped drain (LDD) MOSFETs.- 6.1 Validity of the I-V extraction method for LDD MOSFETs.- 6.2 Bias-dependent effective channel length and series resistance.- 6.3 Constant effective channel length determination method.- 6.4 Capacitance-based metallurgical channel length determination method.- 6.5 Drain and source resistances of LDD MOSFETs.- 6.6 Gate-oxide thickness dependence of LDD MOSFET parameters.- References.- Appendices.- Appendix A Physical constants and unit conversions.- Appendix B Properties of germanium, silicon, and gallium arsenide (at 300 K).- Appendix C Properties of Si02 and Si3N4 (at 300 K).- Appendix D Derivation of the integral function and its applications to parameter extraction.- About the authors.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826