Thierry Meynard
Analysis and Design of Multicell DC/DC Converters Using Vectorized Models
Thierry Meynard
Analysis and Design of Multicell DC/DC Converters Using Vectorized Models
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Shows how the concepts of vectorization and design masks can be used to help the designer in comparing different designs and making the right choices. The book addresses series and parallel multicell conversion directly, and the concepts can be generalized to describe other topologies.
Andere Kunden interessierten sich auch für
- Roland RyndzionekNew concept and analysis of the multicell piezoelectric motor29,99 €
- Marc BoillotAdvanced Smartgrids for Distribution System Operators, Volume 1189,99 €
- Zhengyou HeWavelet Analysis and Transient Signal Processing Applications for Power Systems156,99 €
- Allan D KrausDesign and Analysis of Heat Sinks218,99 €
- Tamer KhatibModeling of Photovoltaic Systems Using MATLAB138,99 €
- Laurence ChèzeKinematic Analysis of Human Movement189,99 €
- Zhenya LiuElectric Power and Energy in China104,99 €
-
-
-
Shows how the concepts of vectorization and design masks can be used to help the designer in comparing different designs and making the right choices. The book addresses series and parallel multicell conversion directly, and the concepts can be generalized to describe other topologies.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley
- Seitenzahl: 160
- Erscheinungstermin: 16. März 2015
- Englisch
- Abmessung: 240mm x 161mm x 13mm
- Gewicht: 413g
- ISBN-13: 9781848218000
- ISBN-10: 1848218001
- Artikelnr.: 41861857
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Wiley
- Seitenzahl: 160
- Erscheinungstermin: 16. März 2015
- Englisch
- Abmessung: 240mm x 161mm x 13mm
- Gewicht: 413g
- ISBN-13: 9781848218000
- ISBN-10: 1848218001
- Artikelnr.: 41861857
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Thierry Meynard is Directeur de Recherches CNRS at Laboratoire LAPLACE, ENSEEIHT, INPT, University of Toulouse, France and part-time consultant at CIRTEM (Centre d'ingénierie et de recherche en technologies de l'électrotechnique moderne). He is the co-inventor of various topologies of series multicell (multilevel) converters and has been involved in the transfer of several of these topologies to industry, especially in the field of medium voltage drives (typ. 1-10kV, 1-10MW). In recent years his research interests have focused on parallel multicell (interleaved) converters for application in low voltage embedded applications (<1kV) and on the design of corresponding magnetic components.
CHAPTER 1. GENERAL PROPERTIES OF MULTILEVEL CONVERTERS 1
1.1. Time-domain: multilevel waveform and apparent switching frequency 1
1.2. Frequency domain: harmonic cancellation 4
1.3. Transient response 5
1.4. Conclusion 6
CHAPTER 2. TOPOLOGIES OF MULTILEVEL DC/DC CONVERTERS 9
2.1. Series connection 9
2.1.1. Direct series connection with isolated sources 9
2.1.2. Flying capacitor 11
2.2. Parallel connection 14
2.2.1. Interleaved choppers with star-connected inductors 14
2.2.2. Interleaved choppers with InterCell Transformers (ICTs) 17
2.3. Series-parallel connection 20
CHAPTER 3. CONCEPT OF VECTORIZATION IN PLECS 23
3.1. Vectorized components 23
3.2. Star-connection block and parallel multicell converter 25
3.3. Series connection block and series multicell converter 27
3.4. Generalized multicell commutation cell 28
3.5. Practice 34
3.5.1. How to? 34
3.5.2. Basic blocks 34
CHAPTER 4. VECTORIZED MODULATOR FOR MULTILEVEL CHOPPERS 37
4.1. General principle 37
4.2. xZOH: equalizing multisampler for multilevel choppers 38
4.2.1. Control as the main source of perturbation 38
4.2.2. Handling duty cycle variation 38
4.2.3. Frequency response of the equalizing sampler and modulator 51
4.3. Practice 53
CHAPTER 5. VOLTAGE BALANCE IN SERIES MULTILEVEL CONVERTERS 57
5.1. Basic principles 57
5.2. Linear circuits 58
5.2.1. Internal balancers 58
5.2.2. External balance boosters 59
5.2.3. Pros and cons of internal/external balance boosters 64
5.3. Nonlinear variants 65
5.3.1. Internal balance boosters 65
5.3.2. External balance boosters 66
5.4. Loss-based design 67
5.4.1. Introduction 67
5.4.2. Internal balance boosters 68
5.4.3. External balance boosters 68
5.5. Vectorized models of balance boosters 69
CHAPTER 6. FILTER DESIGN 75
6.1. Requirements 75
6.1.1. Steady state: current ripple, voltage ripple and standards 75
6.1.2. Transients 83
6.1.3. Extra design constraints 84
6.2. Design process 85
CHAPTER 7. DESIGN OF MAGNETIC COMPONENTS FOR MULTILEVEL CHOPPERS 89
7.1. Requirements and problem formulation 89
7.2. Area product 92
7.2.1. Low frequency - low ripple formulation for filtering inductors 92
7.2.2. General formulation for filtering inductors 94
7.2.3. Application to inductors for interleaved converters 95
7.2.4. Extension to InterCell Transformers 97
7.3. Optimal area product of magnetic components for interleaved converters
99
7.3.1. Optimal area product for inductors 99
7.3.2. Optimal area product for InterCell Transformers 101
7.4. Weight-optimal dimensions for a given area product 101
7.4.1. For inductors 101
7.4.2. For InterCell Transformers 107
7.5. Volume-optimal dimensions for a given area product 118
7.6. Number of turns and air gap 120
7.7. Accounting for current overload 123
7.8. Optimal phase sequence for InterCell Transformers 123
7.9. Vectorized reluctance model of magnetics 125
7.9.1. Inductors 125
7.9.2. Cyclic cascade InterCell Transformers 126
7.9.3. Monolithic InterCell Transformers 128
7.10. Design process 130
CHAPTER 8. CLOSED-LOOP CONTROL OF MULTILEVEL DC/DC CONVERTERS 131
8.1. Principle 131
8.2. Corresponding PLECS block 133
8.3. Average model of the macrocommutation cell for transient studies 136
8.4. Conclusion 140
BIBLIOGRAPHY 141
INDEX 145
1.1. Time-domain: multilevel waveform and apparent switching frequency 1
1.2. Frequency domain: harmonic cancellation 4
1.3. Transient response 5
1.4. Conclusion 6
CHAPTER 2. TOPOLOGIES OF MULTILEVEL DC/DC CONVERTERS 9
2.1. Series connection 9
2.1.1. Direct series connection with isolated sources 9
2.1.2. Flying capacitor 11
2.2. Parallel connection 14
2.2.1. Interleaved choppers with star-connected inductors 14
2.2.2. Interleaved choppers with InterCell Transformers (ICTs) 17
2.3. Series-parallel connection 20
CHAPTER 3. CONCEPT OF VECTORIZATION IN PLECS 23
3.1. Vectorized components 23
3.2. Star-connection block and parallel multicell converter 25
3.3. Series connection block and series multicell converter 27
3.4. Generalized multicell commutation cell 28
3.5. Practice 34
3.5.1. How to? 34
3.5.2. Basic blocks 34
CHAPTER 4. VECTORIZED MODULATOR FOR MULTILEVEL CHOPPERS 37
4.1. General principle 37
4.2. xZOH: equalizing multisampler for multilevel choppers 38
4.2.1. Control as the main source of perturbation 38
4.2.2. Handling duty cycle variation 38
4.2.3. Frequency response of the equalizing sampler and modulator 51
4.3. Practice 53
CHAPTER 5. VOLTAGE BALANCE IN SERIES MULTILEVEL CONVERTERS 57
5.1. Basic principles 57
5.2. Linear circuits 58
5.2.1. Internal balancers 58
5.2.2. External balance boosters 59
5.2.3. Pros and cons of internal/external balance boosters 64
5.3. Nonlinear variants 65
5.3.1. Internal balance boosters 65
5.3.2. External balance boosters 66
5.4. Loss-based design 67
5.4.1. Introduction 67
5.4.2. Internal balance boosters 68
5.4.3. External balance boosters 68
5.5. Vectorized models of balance boosters 69
CHAPTER 6. FILTER DESIGN 75
6.1. Requirements 75
6.1.1. Steady state: current ripple, voltage ripple and standards 75
6.1.2. Transients 83
6.1.3. Extra design constraints 84
6.2. Design process 85
CHAPTER 7. DESIGN OF MAGNETIC COMPONENTS FOR MULTILEVEL CHOPPERS 89
7.1. Requirements and problem formulation 89
7.2. Area product 92
7.2.1. Low frequency - low ripple formulation for filtering inductors 92
7.2.2. General formulation for filtering inductors 94
7.2.3. Application to inductors for interleaved converters 95
7.2.4. Extension to InterCell Transformers 97
7.3. Optimal area product of magnetic components for interleaved converters
99
7.3.1. Optimal area product for inductors 99
7.3.2. Optimal area product for InterCell Transformers 101
7.4. Weight-optimal dimensions for a given area product 101
7.4.1. For inductors 101
7.4.2. For InterCell Transformers 107
7.5. Volume-optimal dimensions for a given area product 118
7.6. Number of turns and air gap 120
7.7. Accounting for current overload 123
7.8. Optimal phase sequence for InterCell Transformers 123
7.9. Vectorized reluctance model of magnetics 125
7.9.1. Inductors 125
7.9.2. Cyclic cascade InterCell Transformers 126
7.9.3. Monolithic InterCell Transformers 128
7.10. Design process 130
CHAPTER 8. CLOSED-LOOP CONTROL OF MULTILEVEL DC/DC CONVERTERS 131
8.1. Principle 131
8.2. Corresponding PLECS block 133
8.3. Average model of the macrocommutation cell for transient studies 136
8.4. Conclusion 140
BIBLIOGRAPHY 141
INDEX 145
CHAPTER 1. GENERAL PROPERTIES OF MULTILEVEL CONVERTERS 1
1.1. Time-domain: multilevel waveform and apparent switching frequency 1
1.2. Frequency domain: harmonic cancellation 4
1.3. Transient response 5
1.4. Conclusion 6
CHAPTER 2. TOPOLOGIES OF MULTILEVEL DC/DC CONVERTERS 9
2.1. Series connection 9
2.1.1. Direct series connection with isolated sources 9
2.1.2. Flying capacitor 11
2.2. Parallel connection 14
2.2.1. Interleaved choppers with star-connected inductors 14
2.2.2. Interleaved choppers with InterCell Transformers (ICTs) 17
2.3. Series-parallel connection 20
CHAPTER 3. CONCEPT OF VECTORIZATION IN PLECS 23
3.1. Vectorized components 23
3.2. Star-connection block and parallel multicell converter 25
3.3. Series connection block and series multicell converter 27
3.4. Generalized multicell commutation cell 28
3.5. Practice 34
3.5.1. How to? 34
3.5.2. Basic blocks 34
CHAPTER 4. VECTORIZED MODULATOR FOR MULTILEVEL CHOPPERS 37
4.1. General principle 37
4.2. xZOH: equalizing multisampler for multilevel choppers 38
4.2.1. Control as the main source of perturbation 38
4.2.2. Handling duty cycle variation 38
4.2.3. Frequency response of the equalizing sampler and modulator 51
4.3. Practice 53
CHAPTER 5. VOLTAGE BALANCE IN SERIES MULTILEVEL CONVERTERS 57
5.1. Basic principles 57
5.2. Linear circuits 58
5.2.1. Internal balancers 58
5.2.2. External balance boosters 59
5.2.3. Pros and cons of internal/external balance boosters 64
5.3. Nonlinear variants 65
5.3.1. Internal balance boosters 65
5.3.2. External balance boosters 66
5.4. Loss-based design 67
5.4.1. Introduction 67
5.4.2. Internal balance boosters 68
5.4.3. External balance boosters 68
5.5. Vectorized models of balance boosters 69
CHAPTER 6. FILTER DESIGN 75
6.1. Requirements 75
6.1.1. Steady state: current ripple, voltage ripple and standards 75
6.1.2. Transients 83
6.1.3. Extra design constraints 84
6.2. Design process 85
CHAPTER 7. DESIGN OF MAGNETIC COMPONENTS FOR MULTILEVEL CHOPPERS 89
7.1. Requirements and problem formulation 89
7.2. Area product 92
7.2.1. Low frequency - low ripple formulation for filtering inductors 92
7.2.2. General formulation for filtering inductors 94
7.2.3. Application to inductors for interleaved converters 95
7.2.4. Extension to InterCell Transformers 97
7.3. Optimal area product of magnetic components for interleaved converters
99
7.3.1. Optimal area product for inductors 99
7.3.2. Optimal area product for InterCell Transformers 101
7.4. Weight-optimal dimensions for a given area product 101
7.4.1. For inductors 101
7.4.2. For InterCell Transformers 107
7.5. Volume-optimal dimensions for a given area product 118
7.6. Number of turns and air gap 120
7.7. Accounting for current overload 123
7.8. Optimal phase sequence for InterCell Transformers 123
7.9. Vectorized reluctance model of magnetics 125
7.9.1. Inductors 125
7.9.2. Cyclic cascade InterCell Transformers 126
7.9.3. Monolithic InterCell Transformers 128
7.10. Design process 130
CHAPTER 8. CLOSED-LOOP CONTROL OF MULTILEVEL DC/DC CONVERTERS 131
8.1. Principle 131
8.2. Corresponding PLECS block 133
8.3. Average model of the macrocommutation cell for transient studies 136
8.4. Conclusion 140
BIBLIOGRAPHY 141
INDEX 145
1.1. Time-domain: multilevel waveform and apparent switching frequency 1
1.2. Frequency domain: harmonic cancellation 4
1.3. Transient response 5
1.4. Conclusion 6
CHAPTER 2. TOPOLOGIES OF MULTILEVEL DC/DC CONVERTERS 9
2.1. Series connection 9
2.1.1. Direct series connection with isolated sources 9
2.1.2. Flying capacitor 11
2.2. Parallel connection 14
2.2.1. Interleaved choppers with star-connected inductors 14
2.2.2. Interleaved choppers with InterCell Transformers (ICTs) 17
2.3. Series-parallel connection 20
CHAPTER 3. CONCEPT OF VECTORIZATION IN PLECS 23
3.1. Vectorized components 23
3.2. Star-connection block and parallel multicell converter 25
3.3. Series connection block and series multicell converter 27
3.4. Generalized multicell commutation cell 28
3.5. Practice 34
3.5.1. How to? 34
3.5.2. Basic blocks 34
CHAPTER 4. VECTORIZED MODULATOR FOR MULTILEVEL CHOPPERS 37
4.1. General principle 37
4.2. xZOH: equalizing multisampler for multilevel choppers 38
4.2.1. Control as the main source of perturbation 38
4.2.2. Handling duty cycle variation 38
4.2.3. Frequency response of the equalizing sampler and modulator 51
4.3. Practice 53
CHAPTER 5. VOLTAGE BALANCE IN SERIES MULTILEVEL CONVERTERS 57
5.1. Basic principles 57
5.2. Linear circuits 58
5.2.1. Internal balancers 58
5.2.2. External balance boosters 59
5.2.3. Pros and cons of internal/external balance boosters 64
5.3. Nonlinear variants 65
5.3.1. Internal balance boosters 65
5.3.2. External balance boosters 66
5.4. Loss-based design 67
5.4.1. Introduction 67
5.4.2. Internal balance boosters 68
5.4.3. External balance boosters 68
5.5. Vectorized models of balance boosters 69
CHAPTER 6. FILTER DESIGN 75
6.1. Requirements 75
6.1.1. Steady state: current ripple, voltage ripple and standards 75
6.1.2. Transients 83
6.1.3. Extra design constraints 84
6.2. Design process 85
CHAPTER 7. DESIGN OF MAGNETIC COMPONENTS FOR MULTILEVEL CHOPPERS 89
7.1. Requirements and problem formulation 89
7.2. Area product 92
7.2.1. Low frequency - low ripple formulation for filtering inductors 92
7.2.2. General formulation for filtering inductors 94
7.2.3. Application to inductors for interleaved converters 95
7.2.4. Extension to InterCell Transformers 97
7.3. Optimal area product of magnetic components for interleaved converters
99
7.3.1. Optimal area product for inductors 99
7.3.2. Optimal area product for InterCell Transformers 101
7.4. Weight-optimal dimensions for a given area product 101
7.4.1. For inductors 101
7.4.2. For InterCell Transformers 107
7.5. Volume-optimal dimensions for a given area product 118
7.6. Number of turns and air gap 120
7.7. Accounting for current overload 123
7.8. Optimal phase sequence for InterCell Transformers 123
7.9. Vectorized reluctance model of magnetics 125
7.9.1. Inductors 125
7.9.2. Cyclic cascade InterCell Transformers 126
7.9.3. Monolithic InterCell Transformers 128
7.10. Design process 130
CHAPTER 8. CLOSED-LOOP CONTROL OF MULTILEVEL DC/DC CONVERTERS 131
8.1. Principle 131
8.2. Corresponding PLECS block 133
8.3. Average model of the macrocommutation cell for transient studies 136
8.4. Conclusion 140
BIBLIOGRAPHY 141
INDEX 145