Detailed account of analysis on Polish spaces with a straightforward introduction to optimal transportation.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
D. J. H. Garling is a Fellow of St John's College, Cambridge, and Emeritus Reader in Mathematical Analysis at the University of Cambridge. He has written several books on mathematics, including Inequalities: A Journey into Linear Algebra (Cambridge, 2007) and A Course in Mathematical Analysis (Cambridge, 2013).
Inhaltsangabe
Introduction Part I. Topological Properties: 1. General topology 2. Metric spaces 3. Polish spaces and compactness 4. Semi-continuous functions 5. Uniform spaces and topological groups 6. Càdlàg functions 7. Banach spaces 8. Hilbert space 9. The Hahn-Banach theorem 10. Convex functions 11. Subdifferentials and the legendre transform 12. Compact convex Polish spaces 13. Some fixed point theorems Part II. Measures on Polish Spaces: 14. Abstract measure theory 15. Further measure theory 16. Borel measures 17. Measures on Euclidean space 18. Convergence of measures 19. Introduction to Choquet theory Part III. Introduction to Optimal Transportation: 20. Optimal transportation 21. Wasserstein metrics 22. Some examples Further reading Index.
Introduction Part I. Topological Properties: 1. General topology 2. Metric spaces 3. Polish spaces and compactness 4. Semi-continuous functions 5. Uniform spaces and topological groups 6. Càdlàg functions 7. Banach spaces 8. Hilbert space 9. The Hahn-Banach theorem 10. Convex functions 11. Subdifferentials and the legendre transform 12. Compact convex Polish spaces 13. Some fixed point theorems Part II. Measures on Polish Spaces: 14. Abstract measure theory 15. Further measure theory 16. Borel measures 17. Measures on Euclidean space 18. Convergence of measures 19. Introduction to Choquet theory Part III. Introduction to Optimal Transportation: 20. Optimal transportation 21. Wasserstein metrics 22. Some examples Further reading Index.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/neu