The Smirnov classes E¿, where p > 0, are classes of analytic functions on bounded, n-connected domains in the complex plane. Functions in these classes satisfy a certain growth condition and have a relationship to the more well known classes of functions known as the Hardy classes H¿. This book explores how the geometry of a given domain will determine the existence of non-constant analytic functions in Smirnov classes that possess real boundary values. This is a phenomenon that does not occur among functions in the Hardy classes.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.