Die zweite Auflage des äußerst erfolgreichen Lehrbuches der Elektrochemie für Fortgeschrittene: Gewohnt benutzerfreundlich und übersichtlich organisiert, aber um viele neue Kapitel ergänzt! Neben dem gesamten Spektrum elektrochemischer Verfahren und Instrumente einschließlich Biosensoren kommen jetzt beispielsweise auch Aspekte des Nachweises einzelner Moleküle, DNA-Sensoren und miniaturisierte Analysatoren zur Sprache. Mit zusätzlichen Übungsaufgaben! Providing a sound understanding of the fundamentals of electrode reactions and of the principles of electrochemical methods--with a focus on…mehr
Die zweite Auflage des äußerst erfolgreichen Lehrbuches der Elektrochemie für Fortgeschrittene: Gewohnt benutzerfreundlich und übersichtlich organisiert, aber um viele neue Kapitel ergänzt! Neben dem gesamten Spektrum elektrochemischer Verfahren und Instrumente einschließlich Biosensoren kommen jetzt beispielsweise auch Aspekte des Nachweises einzelner Moleküle, DNA-Sensoren und miniaturisierte Analysatoren zur Sprache. Mit zusätzlichen Übungsaufgaben! Providing a sound understanding of the fundamentals of electrode reactions and of the principles of electrochemical methods--with a focus on the potential for solving real-life analytical problems--this Third Edition has been thoroughly revised and updated to cover the latest developments in electroanalytical chemistry. This comprehensive reference includes recent advances in methodologies, sensors, detectors, and microchips, and establishes a balance between voltammetric and potentiometric techniques.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Joseph Wang is Professor in Department of Nanoengineering at the University of California, San Diego. He received his PhD from the Israel Institute of Technology in 1978. He held a Regents Professorship and a Manasse Chair at New Mexico State University and served as the Director of Center for Bioelectronics and Biosensors of the Arizona State University. Joseph Wang has published more than 800 papers and ten books and holds twelve patents. He received two ACS National Awards and three honorary professorships from Spain, Argentina and Slovenia. He became the most cited electrochemist in the world and was listed fourth on the ISI list of 'Most Cited Researchers in Chemistry' in the decade 1996-2006. Joseph Wang's scientific interests are concentrated in the areas of nanomachines, bioelectronics, bionanotechnology and electroanalytical chemistry.
Inhaltsangabe
Preface.
Abbreviations and Symbols.
1. Fundamental Concepts.
1.1 Why Electroanalysis?
1.2 Faradaic Processes.
1.2.1 Mass-Transport-Controlled Reactions.
1.2.1.1 Potential-Step Experiment.
1.2.1.2 Potential-Sweep Experiments.
1.2.2 Reactions Controlled by the Rate of Electron Transfer.
1.2.2.1 Activated Complex Theory.
1.3 Electrical Double Layer.
1.4 Electrocapillary Effect.
1.5 Supplementary Reading.
Problems.
References.
2. Study of Electrode Reactions and Interfacial Properties.
2.1 Cyclic Voltammetry.
2.1.1 Data Interpretation.
2.1.1.1 Reversible Systems.
2.1.1.2 Irreversible and Quasi-reversible Systems.
2.1.2 Study of Reaction Mechanisms.
2.1.3 Study of Adsorption Processes.
2.1.4 Quantitative Applications.
2.2 Spectroelectrochemistry.
2.2.1 Experimental Arrangement.
2.2.2 Principles and Applications.
2.2.3 Electrochemiluminescence.
2.2.4 Optical Probing of Electrode-Solution Interfaces.
2.3 Scanning Probe Microscopy.
2.3.1 Scanning Tunneling Microscopy.
2.3.2 Atomic Force Microscopy.
2.3.3 Scanning Electrochemical Microscopy.
2.4 Electrochemical Quartz Crystal Microbalance.
2.5 Impedance Spectroscopy.
Examples.
Problems.
References.
3. Controlled-Potential Techniques.
3.1 Chronoamperometry.
3.2 Polarography.
3.3 Pulse Voltammetry.
3.3.1 Normal-Pulse Voltammetry.
3.3.2 Differential-Pulse Voltammetry.
3.3.3 Square-Wave Voltammetry.
3.3.4 Staircase Voltammetry.
3.4 AC Voltammetry.
3.5 Stripping Analysis.
3.5.1 Anodic Stripping Voltammetry.
3.5.2 Potentiometric Stripping Analysis.
3.5.3 Adsorptive Stripping Voltammetry and Potentiometry.
3.5.4 Cathodic Stripping Voltammetry.
3.5.5 Abrasive Stripping Voltammetry.
3.5.6 Applications.
3.6 Flow Analysis.
3.6.1 Principles.
3.6.2 Cell Design.
3.6.3 Mass Transport and Current Response.
3.6.4 Detection Modes.
Examples.
Problems.
References.
4. Practical Considerations.
4.1 Electrochemical Cells.
4.2 Solvents and Supporting Electrolytes.
4.3 Oxygen Removal.
4.4 Instrumentation.
4.5 Working Electrodes.
4.5.1 Mercury Electrodes.
4.5.2 Solid Electrodes.
4.5.2.1 Rotating Disk and Rotating Ring Disk Electrodes.
4.5.2.2 Carbon Electrodes.
4.5.2.3 Metal Electrodes.
4.5.3 Chemically Modified Electrodes.
4.5.3.1 Self-Assembled Monolayers.
4.5.3.2 Carbon-Nanotube-Modified Electrodes.
4.5.3.3 Sol-gel Encapsulation of Reactive Species.
4.5.3.4 Electrocatalytically Modified Electrodes.
4.5.3.5 Preconcentrating Electrodes.
4.5.3.6 Permselective Coatings.
4.5.3.7 Conducting Polymers.
4.5.4 Microelectrodes.
4.5.4.1 Diffusion at Microelectrodes.
4.5.4.2 Microelectrode Configurations.
4.5.4.3 Composite Electrodes.
Examples.
Problems.
References.
5. Potentiometry.
5.1 Principles of Potentiometric Measurements.
5.2 Ion-Selective Electrodes.
5.2.1 Glass Electrodes.
5.2.1.1 pH Electrodes.
5.2.1.2 Glass Electrodes for Other Cations.
5.2.2 Liquid Membrane Electrodes.
5.2.2.1 Ion Exchanger Electrodes.
5.2.2.2 Neutral Carrier Electrodes.
5.2.3 Solid-State Electrodes.
5.2.4 Coated-Wire Electrodes and Solid-State Electrodes Without an Internal Filling Solution.
5.3 On-line, On-site, and In Vivo Potentiometric Measurements.
Examples.
Problems.
References.
6. Electrochemical Sensors.
6.1 Electrochemical Biosensors.
6.1.1 Enzyme-Based Electrodes.
6.1.1.1 Practical and Theoretical Considerations.
6.1.1.2 Enzyme Electrodes of Analytical Significance.
6.1.1.3 Tissue and Bacteria Electrodes.
6.1.2 Affinity Biosensors.
6.1.2.1 Immunosensors.
6.1.2.2 DNA Hybridization Biosensors.
6.1.2.3 Receptor-Based Sensors.
6.1.2.4 Electrochemical Sensors Based on Molecularly Imprinted Polymers.
6.2 Gas Sensors.
6.2.1 Carbon Dioxide Sensors.
6.2.2 Oxygen Electrodes.
6.3 Solid-State Devices.
6.3.1 Ion-Selective Field Effect Transistors.
6.3.2 Microfabrication of Solid-State Sensor Assemblies.