The congestion control mechanism has been responsible for maintaining stability as the Internet scaled up by many orders of magnitude in size, speed, traffic volume, coverage, and complexity over the last three decades. In this book, we develop a coherent theory of congestion control from the ground up to help understand and design these algorithms. We model network traffic as fluids that flow from sources to destinations and model congestion control algorithms as feedback dynamical systems. We show that the model is well defined. We characterize its equilibrium points and prove their…mehr
The congestion control mechanism has been responsible for maintaining stability as the Internet scaled up by many orders of magnitude in size, speed, traffic volume, coverage, and complexity over the last three decades. In this book, we develop a coherent theory of congestion control from the ground up to help understand and design these algorithms. We model network traffic as fluids that flow from sources to destinations and model congestion control algorithms as feedback dynamical systems. We show that the model is well defined. We characterize its equilibrium points and prove their stability. We will use several real protocols for illustration but the emphasis will be on various mathematical techniques for algorithm analysis.Specifically we are interested in four questions:1. How are congestion control algorithms modelled?2. Are the models well defined?3. How are the equilibrium points of a congestion control model characterized?4. How are the stability of these equilibrium points analyzed?For each topic, we first present analytical tools, from convex optimization, to control and dynamical systems, Lyapunov and Nyquist stability theorems, and to projection and contraction theorems. We then apply these basic tools to congestion control algorithms and rigorously prove their equilibrium and stability properties. A notable feature of this book is the careful treatment of projected dynamics that introduces discontinuity in our differential equations.Even though our development is carried out in the context of congestion control, the set of system theoretic tools employed and the process of understanding a physical system, building mathematical models, and analyzing these models for insights have a much wider applicability than to congestion control.
Produktdetails
Produktdetails
Synthesis Lectures on Learning, Networks, and Algorithms
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Steven H. Low has been a professor with the Department of Computing & Mathematical Sciences and the Department of Electrical Engineering at California Institute of Technology (Caltech) since 2000. Before that, he was with AT&T Bell Laboratories, Murray Hill, NJ from 1992-1996, and with the University of Melbourne, Australia from 1996-2000. He has been a co-recipient of IEEE best paper awards, on the editorial boards of major journals in networking and power systems, and Honorary/Chair professors in Australia, China, and Taiwan. He is an IEEE Fellow. His research on communication networks has been accelerating more than 1TB of Internet traffic every second since 2014. He was a member of the Networking and Information Technology Technical Advisory Group for the US President's Council of Advisors on Science and Technology (PCAST) in 2006. He received his B.S. from Cornell and a Ph.D. from UC Berkeley, both in Electrical Engineering.
Inhaltsangabe
Preface.- Acknowledgments.- Notations.- Congestion Control Models.- Equilibrium Structure.- Global Stability: Lyapunov Method.- Global Stability: Passivity Method.- Global Stability: Gradient Projection Method.- Local Stability with Delay.- Bibliography.- Author's Biography.
Preface.- Acknowledgments.- Notations.- Congestion Control Models.- Equilibrium Structure.- Global Stability: Lyapunov Method.- Global Stability: Passivity Method.- Global Stability: Gradient Projection Method.- Local Stability with Delay.- Bibliography.- Author's Biography.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826