Analyzing Network Data in Biology and Medicine
An Interdisciplinary Textbook for Biological, Medical and Computational Scientists
Herausgeber: Przulj, Natasa
Analyzing Network Data in Biology and Medicine
An Interdisciplinary Textbook for Biological, Medical and Computational Scientists
Herausgeber: Przulj, Natasa
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Introduces biological concepts and biotechnologies producing the data, graph and network theory, cluster analysis and machine learning, using real-world biological and medical examples.
Andere Kunden interessierten sich auch für
- H Russell BernardAnalyzing Qualitative Data168,99 €
- Actor-Network Theory Research1.365,99 €
- National Research CouncilAnalyzing Information on Women-Owned Small Businesses in Federal Contracting45,99 €
- Applications of Social Network Analysis1.233,99 €
- Jose Manuel Magallanes ReyesIntroduction to Data Science for Social and Policy Research47,99 €
- National Research CouncilMathematics and 21st Century Biology53,99 €
- Kory FloydThe Biology of Human Communication134,99 €
-
-
-
Introduces biological concepts and biotechnologies producing the data, graph and network theory, cluster analysis and machine learning, using real-world biological and medical examples.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 643
- Erscheinungstermin: 13. Juni 2019
- Englisch
- Abmessung: 247mm x 174mm x 32mm
- Gewicht: 1287g
- ISBN-13: 9781108432238
- ISBN-10: 1108432239
- Artikelnr.: 53168328
- Verlag: Cambridge University Press
- Seitenzahl: 643
- Erscheinungstermin: 13. Juni 2019
- Englisch
- Abmessung: 247mm x 174mm x 32mm
- Gewicht: 1287g
- ISBN-13: 9781108432238
- ISBN-10: 1108432239
- Artikelnr.: 53168328
1. From genetic data to medicine: from DNA samples to disease risk prediction in personalized genetic tests Luis Leal, Rok Koir and Nataa Prulj; 2. Epigenetic data and disease Rodrigo González-Barrios, Marisol Salgado-Albarrán, Nicolás Alcaraz, Cristian Arriaga-Canon, Lissania Guerra-Calderas, Laura Contreras-Espinoza and Ernesto Soto-Reyes; 3. Introduction to graph and network theory Thomas Gaudelet and Nataa Prulj; 4. Protein-protein interaction data, their quality, and major public databases Anne-Christin Hauschild, Chiara Pastrello, Max Kotlyar and Igor Jurisica; 5. Graphlets in network science and computational biology Khalique Newaz and Tijana Milenkovi
; 6. Cluster analysis Richard Röttger; 7. Machine learning for data integration in cancer precision medicine: matrix factorization approaches Noël Malod-Dognin, Sam Windels and Nataa Prulj; 8. Machine learning for biomarker discovery: significant pattern mining F. Llinares-Lopez and K. Borgwardt; 9. Network alignment Noël Malod-Dogning and Nataa Prulj; 10. Network medicine Pisanu Buphamalai, Michael Caldera, Felix Müller and Jörg Menche; 11. Elucidating genotype-to-phenotype relationships via analyzes of human tissue interactomes Idan Hekselman, Moran Sharon, Omer Basha and Esti Yeger-Lotem; 12. Network neuroscience Alberto Cacciola, Alessandro Muscoloni and Carlo Vittorio Cannistraci; 13. Cytoscape: tool for analyzing and visualizing network data John H. Morris; 14. Analysis of the signatures of cancer stem cells in malignant tumours using protein interactomes and STRING database Kreimir Paveli
, Marko Klobüar, Dolores Kuzelj, Nataa Prulj and Sandra Kraljevi
Paveli
.
; 6. Cluster analysis Richard Röttger; 7. Machine learning for data integration in cancer precision medicine: matrix factorization approaches Noël Malod-Dognin, Sam Windels and Nataa Prulj; 8. Machine learning for biomarker discovery: significant pattern mining F. Llinares-Lopez and K. Borgwardt; 9. Network alignment Noël Malod-Dogning and Nataa Prulj; 10. Network medicine Pisanu Buphamalai, Michael Caldera, Felix Müller and Jörg Menche; 11. Elucidating genotype-to-phenotype relationships via analyzes of human tissue interactomes Idan Hekselman, Moran Sharon, Omer Basha and Esti Yeger-Lotem; 12. Network neuroscience Alberto Cacciola, Alessandro Muscoloni and Carlo Vittorio Cannistraci; 13. Cytoscape: tool for analyzing and visualizing network data John H. Morris; 14. Analysis of the signatures of cancer stem cells in malignant tumours using protein interactomes and STRING database Kreimir Paveli
, Marko Klobüar, Dolores Kuzelj, Nataa Prulj and Sandra Kraljevi
Paveli
.
1. From genetic data to medicine: from DNA samples to disease risk prediction in personalized genetic tests Luis Leal, Rok Koir and Nataa Prulj; 2. Epigenetic data and disease Rodrigo González-Barrios, Marisol Salgado-Albarrán, Nicolás Alcaraz, Cristian Arriaga-Canon, Lissania Guerra-Calderas, Laura Contreras-Espinoza and Ernesto Soto-Reyes; 3. Introduction to graph and network theory Thomas Gaudelet and Nataa Prulj; 4. Protein-protein interaction data, their quality, and major public databases Anne-Christin Hauschild, Chiara Pastrello, Max Kotlyar and Igor Jurisica; 5. Graphlets in network science and computational biology Khalique Newaz and Tijana Milenkovi
; 6. Cluster analysis Richard Röttger; 7. Machine learning for data integration in cancer precision medicine: matrix factorization approaches Noël Malod-Dognin, Sam Windels and Nataa Prulj; 8. Machine learning for biomarker discovery: significant pattern mining F. Llinares-Lopez and K. Borgwardt; 9. Network alignment Noël Malod-Dogning and Nataa Prulj; 10. Network medicine Pisanu Buphamalai, Michael Caldera, Felix Müller and Jörg Menche; 11. Elucidating genotype-to-phenotype relationships via analyzes of human tissue interactomes Idan Hekselman, Moran Sharon, Omer Basha and Esti Yeger-Lotem; 12. Network neuroscience Alberto Cacciola, Alessandro Muscoloni and Carlo Vittorio Cannistraci; 13. Cytoscape: tool for analyzing and visualizing network data John H. Morris; 14. Analysis of the signatures of cancer stem cells in malignant tumours using protein interactomes and STRING database Kreimir Paveli
, Marko Klobüar, Dolores Kuzelj, Nataa Prulj and Sandra Kraljevi
Paveli
.
; 6. Cluster analysis Richard Röttger; 7. Machine learning for data integration in cancer precision medicine: matrix factorization approaches Noël Malod-Dognin, Sam Windels and Nataa Prulj; 8. Machine learning for biomarker discovery: significant pattern mining F. Llinares-Lopez and K. Borgwardt; 9. Network alignment Noël Malod-Dogning and Nataa Prulj; 10. Network medicine Pisanu Buphamalai, Michael Caldera, Felix Müller and Jörg Menche; 11. Elucidating genotype-to-phenotype relationships via analyzes of human tissue interactomes Idan Hekselman, Moran Sharon, Omer Basha and Esti Yeger-Lotem; 12. Network neuroscience Alberto Cacciola, Alessandro Muscoloni and Carlo Vittorio Cannistraci; 13. Cytoscape: tool for analyzing and visualizing network data John H. Morris; 14. Analysis of the signatures of cancer stem cells in malignant tumours using protein interactomes and STRING database Kreimir Paveli
, Marko Klobüar, Dolores Kuzelj, Nataa Prulj and Sandra Kraljevi
Paveli
.