The eye is a complex sensory organ, which enables visual perception of the world. Thus the eye has several tissues that do different tasks. One of the most basic aspects of eye function is the sensitivity of cells to light and its transduction though the optic nerve to the brain. Different organisms use different ways to achieve these tasks. In this sense, eye function becomes a very important evolutionary aspect as well. This book presents the different animal models that are commonly used for eye research and their uniqueness in evaluating different aspects of eye development, evolution, physiology and disease.…mehr
The eye is a complex sensory organ, which enables visual perception of the world. Thus the eye has several tissues that do different tasks. One of the most basic aspects of eye function is the sensitivity of cells to light and its transduction though the optic nerve to the brain. Different organisms use different ways to achieve these tasks. In this sense, eye function becomes a very important evolutionary aspect as well. This book presents the different animal models that are commonly used for eye research and their uniqueness in evaluating different aspects of eye development, evolution, physiology and disease.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Artikelnr. des Verlages: B978-0-12-374169-1.X0001-X
Seitenzahl: 232
Erscheinungstermin: 1. August 2008
Englisch
Abmessung: 277mm x 216mm x 18mm
Gewicht: 807g
ISBN-13: 9780123741691
ISBN-10: 0123741696
Artikelnr.: 23896606
Herstellerkennzeichnung
Libri GmbH
Europaallee 1
36244 Bad Hersfeld
06621 890
Inhaltsangabe
An introductory short chapter on the different types of eyes, stressing possible common molecular machinery (mono vs polyphyletic).Eye diversity in the animal KingdomPhotosensitivity: Melanopsin, opsinsCyanobacteria, protozoa: photoreception, rhodopsinPlatynereis: as a model for lochotrophozoa Drosophila: Superb system for genetics, genetic manipulation.Planaria: As a model for invertebrate eye regeneration with emphasis on stem cells.Fish/cavefish: As a model for retina regeneration and lens development. Zebrafish is accessible for genetic manipulation by morpholinos, medaka accessible for genetic studies.Xenopus: As a model for retina (via progenitor cells) and lens regeneration (by transdifferentiation from the cornea). Also an important model for transgenic studies in amphibia.Newt: As a model for retina and lens regeneration in adult vertebrates by transdifferentiation. Xenopus and Newt could be combined as a chapter on amphibia.Chick: Excellent system for retina regeneration (both transdifferentiation and stem cells) as well for lens and retina development. RCAS transgenesis is an important asset of this system.Mouse: Knock-out and transgenesis technologies make this animal the best mammal to study eye development.Rabbit: Model for cataract surgery.A chapter could be devoted to animals where we see recruitment of crystallins to perform other roles Animal models for physiology of the eye
An introductory short chapter on the different types of eyes, stressing possible common molecular machinery (mono vs polyphyletic).Eye diversity in the animal KingdomPhotosensitivity: Melanopsin, opsinsCyanobacteria, protozoa: photoreception, rhodopsinPlatynereis: as a model for lochotrophozoa Drosophila: Superb system for genetics, genetic manipulation.Planaria: As a model for invertebrate eye regeneration with emphasis on stem cells.Fish/cavefish: As a model for retina regeneration and lens development. Zebrafish is accessible for genetic manipulation by morpholinos, medaka accessible for genetic studies.Xenopus: As a model for retina (via progenitor cells) and lens regeneration (by transdifferentiation from the cornea). Also an important model for transgenic studies in amphibia.Newt: As a model for retina and lens regeneration in adult vertebrates by transdifferentiation. Xenopus and Newt could be combined as a chapter on amphibia.Chick: Excellent system for retina regeneration (both transdifferentiation and stem cells) as well for lens and retina development. RCAS transgenesis is an important asset of this system.Mouse: Knock-out and transgenesis technologies make this animal the best mammal to study eye development.Rabbit: Model for cataract surgery.A chapter could be devoted to animals where we see recruitment of crystallins to perform other roles Animal models for physiology of the eye
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826