40,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
20 °P sammeln
  • Broschiertes Buch

Anomaly detection using Density Maximization Fuzzy C-means Algorithm: The rationale for the anomaly detection system using density maximization approach to the fuzzy c-means clustering algorithm. The workflow of a proposed anomaly detection system with density maximization FCM algorithm. The framework of ensemble classifier-based anomaly detection - this approach of anomalous detection is based on the integration of multiple classifiers so that the weakness of one classifier can be compensated by the other classifier. The workflow of the proposed intrusion detection framework based on an ensemble classifier.…mehr

Produktbeschreibung
Anomaly detection using Density Maximization Fuzzy C-means Algorithm: The rationale for the anomaly detection system using density maximization approach to the fuzzy c-means clustering algorithm. The workflow of a proposed anomaly detection system with density maximization FCM algorithm. The framework of ensemble classifier-based anomaly detection - this approach of anomalous detection is based on the integration of multiple classifiers so that the weakness of one classifier can be compensated by the other classifier. The workflow of the proposed intrusion detection framework based on an ensemble classifier.
Autorenporträt
La Dra. Ruby Sharma trabaja como profesora asociada en el Instituto de Tecnología y Gestión de la Información, Universidad Guru Gobind Singh Indraprastha, Nueva DelhiEl Dr. Sandeep Chaurasia trabaja como profesor en el Departamento de CSE, Escuela de Computación y T.I. en la Universidad de Manipal Jaipur.