Antarctic Ecosystems
An Extreme Environment in a Changing World
Herausgegeben von Rogers, Alex D.; Johnston, Nadine M.; Murphy, Eugene J.; Clarke, Andrew
Antarctic Ecosystems
An Extreme Environment in a Changing World
Herausgegeben von Rogers, Alex D.; Johnston, Nadine M.; Murphy, Eugene J.; Clarke, Andrew
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Since its discovery Antarctica has held a deep fascination for biologists. Extreme environmental conditions, seasonality and isolation have lead to some of the most striking examples of natural selection and adaptation on Earth. Paradoxically, some of these adaptations may pose constraints on the ability of the Antarctic biota to respond to climate change. Parts of Antarctica are showing some of the largest changes in temperature and other environmental conditions in the world. In this volume, published in association with the Royal Society, leading polar scientists present a synthesis of the…mehr
- Martin R. SpeightMarine Ecology123,99 €
- The Biology and Ecology of Tintinnid Ciliates197,99 €
- Charles B. MillerBiological Oceanography74,99 €
- Alejandro A. VagelliThe Banggai Cardinalfish202,99 €
- G. Carleton RayMarine Conservation99,99 €
- G. Carleton RayMarine Conservation177,99 €
- Tropical Forest Community Ecology117,99 €
-
-
-
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
- Produktdetails
- Verlag: Wiley & Sons
- Artikelnr. des Verlages: 1A405198400
- 1. Auflage
- Seitenzahl: 552
- Erscheinungstermin: 12. März 2012
- Englisch
- Abmessung: 256mm x 197mm x 32mm
- Gewicht: 1246g
- ISBN-13: 9781405198400
- ISBN-10: 1405198400
- Artikelnr.: 33928606
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Wiley & Sons
- Artikelnr. des Verlages: 1A405198400
- 1. Auflage
- Seitenzahl: 552
- Erscheinungstermin: 12. März 2012
- Englisch
- Abmessung: 256mm x 197mm x 32mm
- Gewicht: 1246g
- ISBN-13: 9781405198400
- ISBN-10: 1405198400
- Artikelnr.: 33928606
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
xi INTRODUCTION: ANTARCTIC ECOLOGY IN A CHANGING WORLD
1 Andrew Clarke
Nadine M. Johnston
Eugene J. Murphy and Alex D. Rogers Introduction
1 Climate change
2 The historical context
3 The importance of scale
3 Fisheries and conservation
4 Concluding remarks
6 References
6 PART 1 TERRESTRIAL AND FRESHWATER HABITATS
11 1 SPATIAL AND TEMPORAL VARIABILITY IN TERRESTRIAL ANTARCTIC BIODIVERSITY
13 Steven L. Chown and Peter Convey 1.1 Introduction
13 1.2 Variation across space
16 1.2.1 Individual and population levels
16 1.2.2 Species level
18 1.2.3 Assemblage and ecosystem levels
20 1.3 Variation through time
25 1.3.1 Individual level
26 1.3.2 Population level
27 1.3.3 Species level
29 1.3.4 Assemblage and ecosystem levels
29 1.4 Conclusions and implications
30 Acknowledgments
31 References
31 2 GLOBAL CHANGE IN A LOW DIVERSITY TERRESTRIAL ECOSYSTEM: THE MCMURDO DRY VALLEYS
44 Diana H. Wall 2.1 Introduction
44 2.2 The McMurdo dry valley region
46 2.3 Above-belowground interactions
46 2.4 The functioning of low diversity systems
50 2.5 Effects of global changes on coupled above-belowground subsystems
51 2.6 Temperature change: warming
52 2.7 Temperature change: cooling
54 2.8 Direct human influence: trampling
54 2.9 UV Radiation
55 2.10 Concluding remarks
56 Acknowledgements
56 References
56 3 ANTARCTIC LAKES AS MODELS FOR THE STUDY OF MICROBIAL BIODIVERSITY
BIOGEOGRAPHY AND EVOLUTION
63 David A. Pearce and Johanna Laybourn-Parry 3.1 The variety of antarctic lake types
63 3.2 The physical and chemical lake environment
66 3.3 The microbial diversity of antarctic lakes
66 3.3.1 Methods for exploring Antarctic lake biodiversity
67 3.3.2 Microbial groups
69 3.3.3 Protists
70 3.3.4 Crustacea
72 3.4 Biogeography
74 3.4.1 Spatial variation and the global ubiquity hypothesis
74 3.4.2 Temporal variation and palaeolimnology
75 3.5 Evolution
76 3.5.1 Prokaryote physiology
76 3.5.2 Eukaryote physiology
77 3.6 Future perspectives
78 3.7 Acknowledgement
78 References
78 PART 2 MARINE HABITATS AND REGIONS
91 4 THE IMPACT OF REGIONAL CLIMATE CHANGE ON THE MARINE ECOSYSTEM OF THE WESTERN ANTARCTIC PENINSULA
93 Andrew Clarke
David K. A. Barnes
Thomas J. Bracegirdle
Hugh W. Ducklow
John C. King
Michael P. Meredith
Eugene J. Murphy and Lloyd S. Peck 4.1 Introduction
93 4.1.1 The oceanographic setting
96 4.1.2 The historical context
97 4.2 Predicted environmental changes along the western antarctic peninsula
98 4.3 Environmental variability and ecological response
100 4.3.1 Biotic responses to climate change: some general points
102 4.4 Responses of individual marine species to climate change
102 4.4.1 Acclimation and evolutionary responses to environmental change in antarctic marine organisms
104 4.5 Community level responses to climate change
106 4.6 Ecosystem level responses to climate change
107 4.7 What biological changes have been observed to date?
109 4.8 Concluding remarks
110 Acknowledgements
110 References
111 5 THE MARINE SYSTEM OF THE WESTERN ANTARCTIC PENINSULA
121 Hugh Ducklow
Andrew Clarke
Rebecca Dickhut
Scott C. Doney
Heidi Geisz
Kuan Huang
Douglas G. Martinson
Michael P. Meredith
Holly V. Moeller
Martin Montes-Hugo
Oscar Schofield
Sharon E. Stammerjohn
Debbie Steinberg and William Fraser 5.1 Introduction
121 5.2 Climate and ice
123 5.2.1 Surface air temperature
123 5.2.2 Sea ice
123 5.2.3 Climate co-variability
125 5.3 Physical oceanography
127 5.4 Nutrients and carbon
130 5.4.1 Nutrients and UCDW intrusions
130 5.4.2 Carbon cycle
131 5.4.3 Dissolved organic carbon
132 5.4.4 Sedimentation and export
133 5.5 Phytoplankton dynamics
134 5.5.1 Seasonal scale dynamics
134 5.5.2 Role of light
134 5.5.3 Role of nutrients
136 5.5.4 Annual variability in phytoplankton
137 5.6 Microbial ecology
138 5.7 Zooplankton
140 5.7.1 Community composition and distribution
140 5.7.2 Long-term trends and climate connections
142 5.7.3 Grazing and biogeochemical cycling
142 5.8 Penguins
143 5.8.1 Contaminants in penguins
145 5.9 Marine mammals
146 5.10 Synthesis: food webs of the wap
147 5.11 Conclusions
148 Acknowledgements
149 References
149 6 SPATIAL AND TEMPORAL OPERATION OF THE SCOTIA SEA ECOSYSTEM
160 E.J. Murphy
J.L. Watkins
P.N. Trathan
K. Reid
M.P. Meredith
S.L. Hill
S.E. Thorpe
N.M. Johnston
A. Clarke
G.A. Tarling
M.A. Collins
J. Forcada
A. Atkinson
P. Ward
I.J. Staniland
D.W. Pond
R.A. Cavanagh
R.S. Shreeve
R.E. Korb
M.J. Whitehouse
P.G. Rodhouse
P. Enderlein
A.G. Hirst
A.R. Martin
D.R. Briggs
N.J. Cunningham and A.H. Fleming 6.1 Introduction
160 6.2 Oceanography and sea ice
163 6.2.1 Upper-ocean circulation and characteristics in the Scotia Sea
163 6.2.2 Physical variability and long-term change
167 6.3 Nutrient and plankton dynamics
168 6.4 Krill in the scotia sea food web
171 6.4.1 Krill distribution in the Scotia Sea
171 6.4.2 Krill growth and age in the Scotia Sea
173 6.4.3 Krill reproduction and recruitment in the Scotia Sea
174 6.4.4 Krill - habitat interactions in the Scotia Sea
177 6.4.5 Krill population variability and change in the Scotia Sea
180 6.4.6 Krill in the Scotia Sea food web
183 6.5 Food web operation
184 6.5.1 Trophic links
184 6.5.2 Spatial operation of the food web
189 6.6 Ecosystem variability and long-term change
192 6.7 Concluding comments
195 Summary
196 Acknowledgements
197 References
197 7 THE ROSS SEA CONTINENTAL SHELF: REGIONAL BIOGEOCHEMICAL CYCLES
TROPHIC INTERACTIONS
AND POTENTIAL FUTURE CHANGES
213 Walker O. Smith
Jr.
David G. Ainley
Riccardo Cattaneo-Vietti and Eileen E. Hofmann 7.1 Introduction
213 7.2 Physical setting
214 7.3 Biological setting
219 7.3.1 Lower trophic levels
219 7.3.2 Mid-trophic levels
225 7.3.3 Fishes and mobile predators
226 7.3.4 Upper trophic levels
227 7.3.5 Benthos
229 7.4 Food web and biotic interactions
230 7.5 Conclusions
232 7.5.1 Uniqueness of the Ross Sea
232 7.5.2 Potential impacts of climate change
233 7.5.3 Conservation and the role of commercial fishing activity in the Ross Sea
234 7.5.4 Research needs and future directions
235 Acknowledgements
235 References
235 8 PELAGIC ECOSYSTEMS IN THE WATERS OFF EAST ANTARCTICA (30 E-150 E)
243 Stephen Nicol and Ben Raymond 8.1 Introduction
243 8.2 The region
245 8.2.1 The east (80 E-150 E)
245 8.2.2 The west (30 E-80 E)
247 8.3 Ecosystem change off east antarctica
251 Summary
251 References
252 9 THE DYNAMIC MOSAIC
255 David K.A. Barnes and Kathleen E. Conlan 9.1 Introduction
255 9.2 Historical and geographic perspectives
256 9.3 Disturbance
257 9.3.1 Ice effects
258 9.3.2 Asteroid impacts
260 9.3.3 Sediment instability and hypoxia
261 9.3.4 Wind and wave action
261 9.3.5 Pollution
262 9.3.6 UV irradiation
263 9.3.7 Volcanic eruptions
263 9.3.8 Trawling
264 9.3.9 Non-indigenous species (NIS)
264 9.3.10 Freshwater
265 9.3.11 Temperature stress
265 9.3.12 Biological agents of physical disturbance
266 9.4 Colonisaton of antarctic sea-beds
266 9.4.1 Larval abundance
266 9.4.2 Hard substrata
266 9.4.3 Soft sediments
269 9.5 Implications of climate change
276 9.6 Conclusion
279 Acknowledgements
280 References
281 10 SOUTHERN OCEAN DEEP BENTHIC BIODIVERSITY
291 A. Brandt
C. De Broyer
B. Ebbe
K.E. Ellingsen
A.J. Gooday
D. Janussen
S. Kaiser
K. Linse
M. Schueller
M.R.A. Thomson
P.A. Tyler and A. Vanreusel 10.1 Introduction
291 10.2 History of antarctic biodiversity work
293 10.3 Geological history and evolution of the antarctic
294 10.3.1 Indian Ocean
294 10.3.2 South Atlantic
294 10.3.3 Weddell Sea
295 10.3.4 Drake Passage and Scotia Sea
296 10.4 Benthic composition and diversity of meio-
macro- and megabenthos
296 10.4.1 Meiofauna
297 10.4.2 Macrofaunal composition and diversity
299 10.4.3 Megafaunal composition and diversity
304 10.5 Phylogenetic relationships of selected taxa
308 10.5.1 Foraminifera
308 10.5.2 Isopoda
308 10.5.3 Tanaidacea
309 10.5.4 Bivalvia
310 10.5.5 Polychaeta
310 10.5.6 Cephalopoda
310 10.6 Biogeography and endemism
311 10.6.1 Porifera
311 10.6.2 Foraminifera
311 10.6.3 Metazoan meiofauna
311 10.6.4 Peracarida
312 10.6.5 Mollusca
312 10.6.6 Echinodermata
313 10.6.7 Brachiopoda
313 10.6.8 Polychaeta
313 10.6.9 Bryozoa
313 10.7 Relationship of selected faunal assemblages to environmental variables
313 10.7.1 Large-scale patterns with depth
313 10.7.2 Patterns influenced by other environmental or physical factors
317 10.7.3 Isopoda
318 10.8 Similarities and differences between antarctic and other deep-sea systems
318 10.8.1 The environment
318 10.8.2 A direct comparison between the deep sea of the SO and the World Ocean
319 10.8.3 Dispersal and recruitment between the SO and the rest of the world
320 10.8.4 The special case of chemosynthetically-driven deep-sea systems
320 10.9 Conclusions
321 Acknowledgements
321 References
323 11 ENVIRONMENTAL FORCING AND SOUTHERN OCEAN MARINE PREDATOR POPULATIONS
335 Phil N. Trathan
Jaume Forcada and Eugene J. Murphy 11.1 Climate change: recent
rapid
regional warming
335 11.2 Using oscillatory climate signals to predict future change in biological communities
337 11.3 Potential for regional impacts on the biosphere
338 11.4 Confounding isues in identifying a biological signal
339 11.5 Regional ecosystem responses as a consequence of variation in regional food webs
340 11.6 Where biological signals will be most apparent
340 11.7 The southwest atlantic
341 11.8 The indian ocean
344 11.9 The pacific ocean
345 11.10 Similarities between the atlantic
indian and pacific oceans
346 11.11 What ENSO can tell us
347 11.12 Future scenarios
349 References
349 PART 3 MOLECULAR ADAPTATIONS AND EVOLUTION
355 12 MOLECULAR ECOPHYSIOLOGY OF ANTARCTIC NOTOTHENIOID FISHES
357 C.-H. Christina Cheng and H. William Detrich III 12.1 Introduction
357 12.2 Surviving the big chill - notothenioid freezing avoidance by antifreeze proteins
358 12.2.1 Freezing challenge in frigid Antarctic marine environment
358 12.2.2 Historical paradigm of teleost freezing avoidance
360 12.2.3 Paradigm shift I: the 'larval paradox'
360 12.2.4 Paradigm shift II: liver is not the source of blood AFGP in notothenioids
362 12.2.5 Gut versus blood - importance of intestinal freeze avoidance
363 12.2.6 Non-hepatic source of plasma AFGP
364 12.2.7 Alterations in environments and dynamic evolutionary change in notothenioid AFGP gene families
364 12.2.8 Summary comments - antifreeze protein gain in Antarctic notothenioid fish
367 12.3 Haemoprotein loss and cardiovascular adaptation in icefishes - dr. no to the rescue?
367 12.3.1 Vertebrates without haemoglobins - you must be kidding!
367 12.3.2 Haemoprotein loss in icefishes: an evolutionary perspective
368 12.3.3 Cellular correlates of haemoprotein loss
370 12.3.4 The icefish cardiovascular system
371 12.3.5 Compensatory adjustment of the icefish cardiovascular system in a regime of reduced interspecific competition? Enter Dr. NO
371 12.3.6 Haemoproteins
NO metabolism
and icefish evolution
372 12.3.7 Icefishes and erythropoietic gene discovery
372 12.3.8 Summary comments: haemoprotein loss in Antarctic icefishes
374 12.4 Concluding remarks
374 Acknowledgements
374 Dedication
374 References
374 13 MECHANISMS DEFINING THERMAL LIMITS AND ADAPTATION IN MARINE ECTOTHERMS: AN INTEGRATIVE VIEW
379 Hans O. PEURortner
Lloyd S. Peck and George N. Somero 13.1 Introduction: climate-dependent evolution of antarctic fauna
379 13.2 Phenomena of thermal specialization and limitation
382 13.2.1 Molecular and membrane aspects
383 13.2.2 Genomic aspects: gene expression and loss of genetic information
390 13.2.3 From molecular to systemic aspects: thermal limitation
393 13.2.4 From molecular to systemic aspects: thermal adaptation of performance capacity
397 13.2.5 Ecological implications
399 13.2.6 Integration of phenomena: concepts
results and perspectives
405 Acknowledgements
409 References
409 14 EVOLUTION AND BIODIVERSITY OF ANTARCTIC ORGANISMS
417 Alex D. Rogers 14.1 Introduction
417 14.2 The antarctic biota
418 14.3 The break-up of gondwana and the evolution of the southern hemisphere biota
420 14.3.1 Vicariance versus dispersal
420 14.3.2 Dispersal mechanisms
421 14.4 The evolution and biodiversity of the terrestrial sub-antarctic and antarctic biota
423 14.4.1 Plants
423 14.4.2 Animals
427 14.5 The marine environment
432 14.5.1 Biogeography and macroevolution
432 14.5.2 Notothenioid fish
432 14.5.3 Birds
435 14.5.4 Marine invertebrates
436 14.5.5 The molecular ecology and phylogeography of the marine biota
437 14.5.6 Patterns of genetic variation in marine species
448 14.6 Antarctica: a climatic crucible of evolution
450 14.7 The historical constraints on adaptation to present climate change
453 14.8 Future directions for research
453 References
454 PART 4 CONSERVATION AND MANAGEMENT ASPECTS
469 15 BIOGEOGRAPHY AND REGIONAL CLASSIFICATIONS OF ANTARCTICA
471 P. Convey
D.K.A. Barnes
H.J. Griffiths
S.M. Grant
K. Linse and D.N. Thomas 15.1 Introduction
471 15.2 Historical background
474 15.2.1 Physical regions in the marine environment
474 15.2.2 Smaller-scale regionalization within the Antarctic marine environment
474 15.2.3 Physical regions in the littoral environment
475 15.2.4 Physical regions in the terrestrial environment
475 15.3 Data availability
476 15.4 Different realms in the marine and terrestrial environments
477 15.4.1 Pelagic realm
477 15.4.2 Sea ice
478 15.4.3 Benthic realm
479 15.4.4 The terrestrial environment
479 15.4.5 Biogeographical patterns in the terrestrial environment
480 15.4.6 Biogeographic patterns in the marine environment
481 15.5 Overview
485 Acknowledgements
486 References
486 16 CONSERVATION AND MANAGEMENT OF ANTARCTIC ECOSYSTEMS
492 Susie M. Grant
Pete Convey
Kevin A. Hughes
Richard A. Phillips and Phil N. Trathan 16.1 Introduction
492 16.2 Legal frameworks for conservation and management
495 16.2.1 Early regulation of marine living resource harvesting
495 16.2.2 The Antarctic Treaty System
497 16.2.3 Other (non-ATS) agreements and tools relevant to conservation and management
500 16.3 Conservation and management measures
502 16.3.1 Pollution and local disturbance
502 16.3.2 Biosecurity and non-native species
505 16.3.3 Conservation and management of marine living resources
505 16.3.4 Conservation of other individual species
507 16.3.5 Protected areas
509 16.4 Conservation science and monitoring
512 16.5 Future challenges
515 16.6 Conclusions
520 Acknowledgements
521 References
521 Index
526
xi INTRODUCTION: ANTARCTIC ECOLOGY IN A CHANGING WORLD
1 Andrew Clarke
Nadine M. Johnston
Eugene J. Murphy and Alex D. Rogers Introduction
1 Climate change
2 The historical context
3 The importance of scale
3 Fisheries and conservation
4 Concluding remarks
6 References
6 PART 1 TERRESTRIAL AND FRESHWATER HABITATS
11 1 SPATIAL AND TEMPORAL VARIABILITY IN TERRESTRIAL ANTARCTIC BIODIVERSITY
13 Steven L. Chown and Peter Convey 1.1 Introduction
13 1.2 Variation across space
16 1.2.1 Individual and population levels
16 1.2.2 Species level
18 1.2.3 Assemblage and ecosystem levels
20 1.3 Variation through time
25 1.3.1 Individual level
26 1.3.2 Population level
27 1.3.3 Species level
29 1.3.4 Assemblage and ecosystem levels
29 1.4 Conclusions and implications
30 Acknowledgments
31 References
31 2 GLOBAL CHANGE IN A LOW DIVERSITY TERRESTRIAL ECOSYSTEM: THE MCMURDO DRY VALLEYS
44 Diana H. Wall 2.1 Introduction
44 2.2 The McMurdo dry valley region
46 2.3 Above-belowground interactions
46 2.4 The functioning of low diversity systems
50 2.5 Effects of global changes on coupled above-belowground subsystems
51 2.6 Temperature change: warming
52 2.7 Temperature change: cooling
54 2.8 Direct human influence: trampling
54 2.9 UV Radiation
55 2.10 Concluding remarks
56 Acknowledgements
56 References
56 3 ANTARCTIC LAKES AS MODELS FOR THE STUDY OF MICROBIAL BIODIVERSITY
BIOGEOGRAPHY AND EVOLUTION
63 David A. Pearce and Johanna Laybourn-Parry 3.1 The variety of antarctic lake types
63 3.2 The physical and chemical lake environment
66 3.3 The microbial diversity of antarctic lakes
66 3.3.1 Methods for exploring Antarctic lake biodiversity
67 3.3.2 Microbial groups
69 3.3.3 Protists
70 3.3.4 Crustacea
72 3.4 Biogeography
74 3.4.1 Spatial variation and the global ubiquity hypothesis
74 3.4.2 Temporal variation and palaeolimnology
75 3.5 Evolution
76 3.5.1 Prokaryote physiology
76 3.5.2 Eukaryote physiology
77 3.6 Future perspectives
78 3.7 Acknowledgement
78 References
78 PART 2 MARINE HABITATS AND REGIONS
91 4 THE IMPACT OF REGIONAL CLIMATE CHANGE ON THE MARINE ECOSYSTEM OF THE WESTERN ANTARCTIC PENINSULA
93 Andrew Clarke
David K. A. Barnes
Thomas J. Bracegirdle
Hugh W. Ducklow
John C. King
Michael P. Meredith
Eugene J. Murphy and Lloyd S. Peck 4.1 Introduction
93 4.1.1 The oceanographic setting
96 4.1.2 The historical context
97 4.2 Predicted environmental changes along the western antarctic peninsula
98 4.3 Environmental variability and ecological response
100 4.3.1 Biotic responses to climate change: some general points
102 4.4 Responses of individual marine species to climate change
102 4.4.1 Acclimation and evolutionary responses to environmental change in antarctic marine organisms
104 4.5 Community level responses to climate change
106 4.6 Ecosystem level responses to climate change
107 4.7 What biological changes have been observed to date?
109 4.8 Concluding remarks
110 Acknowledgements
110 References
111 5 THE MARINE SYSTEM OF THE WESTERN ANTARCTIC PENINSULA
121 Hugh Ducklow
Andrew Clarke
Rebecca Dickhut
Scott C. Doney
Heidi Geisz
Kuan Huang
Douglas G. Martinson
Michael P. Meredith
Holly V. Moeller
Martin Montes-Hugo
Oscar Schofield
Sharon E. Stammerjohn
Debbie Steinberg and William Fraser 5.1 Introduction
121 5.2 Climate and ice
123 5.2.1 Surface air temperature
123 5.2.2 Sea ice
123 5.2.3 Climate co-variability
125 5.3 Physical oceanography
127 5.4 Nutrients and carbon
130 5.4.1 Nutrients and UCDW intrusions
130 5.4.2 Carbon cycle
131 5.4.3 Dissolved organic carbon
132 5.4.4 Sedimentation and export
133 5.5 Phytoplankton dynamics
134 5.5.1 Seasonal scale dynamics
134 5.5.2 Role of light
134 5.5.3 Role of nutrients
136 5.5.4 Annual variability in phytoplankton
137 5.6 Microbial ecology
138 5.7 Zooplankton
140 5.7.1 Community composition and distribution
140 5.7.2 Long-term trends and climate connections
142 5.7.3 Grazing and biogeochemical cycling
142 5.8 Penguins
143 5.8.1 Contaminants in penguins
145 5.9 Marine mammals
146 5.10 Synthesis: food webs of the wap
147 5.11 Conclusions
148 Acknowledgements
149 References
149 6 SPATIAL AND TEMPORAL OPERATION OF THE SCOTIA SEA ECOSYSTEM
160 E.J. Murphy
J.L. Watkins
P.N. Trathan
K. Reid
M.P. Meredith
S.L. Hill
S.E. Thorpe
N.M. Johnston
A. Clarke
G.A. Tarling
M.A. Collins
J. Forcada
A. Atkinson
P. Ward
I.J. Staniland
D.W. Pond
R.A. Cavanagh
R.S. Shreeve
R.E. Korb
M.J. Whitehouse
P.G. Rodhouse
P. Enderlein
A.G. Hirst
A.R. Martin
D.R. Briggs
N.J. Cunningham and A.H. Fleming 6.1 Introduction
160 6.2 Oceanography and sea ice
163 6.2.1 Upper-ocean circulation and characteristics in the Scotia Sea
163 6.2.2 Physical variability and long-term change
167 6.3 Nutrient and plankton dynamics
168 6.4 Krill in the scotia sea food web
171 6.4.1 Krill distribution in the Scotia Sea
171 6.4.2 Krill growth and age in the Scotia Sea
173 6.4.3 Krill reproduction and recruitment in the Scotia Sea
174 6.4.4 Krill - habitat interactions in the Scotia Sea
177 6.4.5 Krill population variability and change in the Scotia Sea
180 6.4.6 Krill in the Scotia Sea food web
183 6.5 Food web operation
184 6.5.1 Trophic links
184 6.5.2 Spatial operation of the food web
189 6.6 Ecosystem variability and long-term change
192 6.7 Concluding comments
195 Summary
196 Acknowledgements
197 References
197 7 THE ROSS SEA CONTINENTAL SHELF: REGIONAL BIOGEOCHEMICAL CYCLES
TROPHIC INTERACTIONS
AND POTENTIAL FUTURE CHANGES
213 Walker O. Smith
Jr.
David G. Ainley
Riccardo Cattaneo-Vietti and Eileen E. Hofmann 7.1 Introduction
213 7.2 Physical setting
214 7.3 Biological setting
219 7.3.1 Lower trophic levels
219 7.3.2 Mid-trophic levels
225 7.3.3 Fishes and mobile predators
226 7.3.4 Upper trophic levels
227 7.3.5 Benthos
229 7.4 Food web and biotic interactions
230 7.5 Conclusions
232 7.5.1 Uniqueness of the Ross Sea
232 7.5.2 Potential impacts of climate change
233 7.5.3 Conservation and the role of commercial fishing activity in the Ross Sea
234 7.5.4 Research needs and future directions
235 Acknowledgements
235 References
235 8 PELAGIC ECOSYSTEMS IN THE WATERS OFF EAST ANTARCTICA (30 E-150 E)
243 Stephen Nicol and Ben Raymond 8.1 Introduction
243 8.2 The region
245 8.2.1 The east (80 E-150 E)
245 8.2.2 The west (30 E-80 E)
247 8.3 Ecosystem change off east antarctica
251 Summary
251 References
252 9 THE DYNAMIC MOSAIC
255 David K.A. Barnes and Kathleen E. Conlan 9.1 Introduction
255 9.2 Historical and geographic perspectives
256 9.3 Disturbance
257 9.3.1 Ice effects
258 9.3.2 Asteroid impacts
260 9.3.3 Sediment instability and hypoxia
261 9.3.4 Wind and wave action
261 9.3.5 Pollution
262 9.3.6 UV irradiation
263 9.3.7 Volcanic eruptions
263 9.3.8 Trawling
264 9.3.9 Non-indigenous species (NIS)
264 9.3.10 Freshwater
265 9.3.11 Temperature stress
265 9.3.12 Biological agents of physical disturbance
266 9.4 Colonisaton of antarctic sea-beds
266 9.4.1 Larval abundance
266 9.4.2 Hard substrata
266 9.4.3 Soft sediments
269 9.5 Implications of climate change
276 9.6 Conclusion
279 Acknowledgements
280 References
281 10 SOUTHERN OCEAN DEEP BENTHIC BIODIVERSITY
291 A. Brandt
C. De Broyer
B. Ebbe
K.E. Ellingsen
A.J. Gooday
D. Janussen
S. Kaiser
K. Linse
M. Schueller
M.R.A. Thomson
P.A. Tyler and A. Vanreusel 10.1 Introduction
291 10.2 History of antarctic biodiversity work
293 10.3 Geological history and evolution of the antarctic
294 10.3.1 Indian Ocean
294 10.3.2 South Atlantic
294 10.3.3 Weddell Sea
295 10.3.4 Drake Passage and Scotia Sea
296 10.4 Benthic composition and diversity of meio-
macro- and megabenthos
296 10.4.1 Meiofauna
297 10.4.2 Macrofaunal composition and diversity
299 10.4.3 Megafaunal composition and diversity
304 10.5 Phylogenetic relationships of selected taxa
308 10.5.1 Foraminifera
308 10.5.2 Isopoda
308 10.5.3 Tanaidacea
309 10.5.4 Bivalvia
310 10.5.5 Polychaeta
310 10.5.6 Cephalopoda
310 10.6 Biogeography and endemism
311 10.6.1 Porifera
311 10.6.2 Foraminifera
311 10.6.3 Metazoan meiofauna
311 10.6.4 Peracarida
312 10.6.5 Mollusca
312 10.6.6 Echinodermata
313 10.6.7 Brachiopoda
313 10.6.8 Polychaeta
313 10.6.9 Bryozoa
313 10.7 Relationship of selected faunal assemblages to environmental variables
313 10.7.1 Large-scale patterns with depth
313 10.7.2 Patterns influenced by other environmental or physical factors
317 10.7.3 Isopoda
318 10.8 Similarities and differences between antarctic and other deep-sea systems
318 10.8.1 The environment
318 10.8.2 A direct comparison between the deep sea of the SO and the World Ocean
319 10.8.3 Dispersal and recruitment between the SO and the rest of the world
320 10.8.4 The special case of chemosynthetically-driven deep-sea systems
320 10.9 Conclusions
321 Acknowledgements
321 References
323 11 ENVIRONMENTAL FORCING AND SOUTHERN OCEAN MARINE PREDATOR POPULATIONS
335 Phil N. Trathan
Jaume Forcada and Eugene J. Murphy 11.1 Climate change: recent
rapid
regional warming
335 11.2 Using oscillatory climate signals to predict future change in biological communities
337 11.3 Potential for regional impacts on the biosphere
338 11.4 Confounding isues in identifying a biological signal
339 11.5 Regional ecosystem responses as a consequence of variation in regional food webs
340 11.6 Where biological signals will be most apparent
340 11.7 The southwest atlantic
341 11.8 The indian ocean
344 11.9 The pacific ocean
345 11.10 Similarities between the atlantic
indian and pacific oceans
346 11.11 What ENSO can tell us
347 11.12 Future scenarios
349 References
349 PART 3 MOLECULAR ADAPTATIONS AND EVOLUTION
355 12 MOLECULAR ECOPHYSIOLOGY OF ANTARCTIC NOTOTHENIOID FISHES
357 C.-H. Christina Cheng and H. William Detrich III 12.1 Introduction
357 12.2 Surviving the big chill - notothenioid freezing avoidance by antifreeze proteins
358 12.2.1 Freezing challenge in frigid Antarctic marine environment
358 12.2.2 Historical paradigm of teleost freezing avoidance
360 12.2.3 Paradigm shift I: the 'larval paradox'
360 12.2.4 Paradigm shift II: liver is not the source of blood AFGP in notothenioids
362 12.2.5 Gut versus blood - importance of intestinal freeze avoidance
363 12.2.6 Non-hepatic source of plasma AFGP
364 12.2.7 Alterations in environments and dynamic evolutionary change in notothenioid AFGP gene families
364 12.2.8 Summary comments - antifreeze protein gain in Antarctic notothenioid fish
367 12.3 Haemoprotein loss and cardiovascular adaptation in icefishes - dr. no to the rescue?
367 12.3.1 Vertebrates without haemoglobins - you must be kidding!
367 12.3.2 Haemoprotein loss in icefishes: an evolutionary perspective
368 12.3.3 Cellular correlates of haemoprotein loss
370 12.3.4 The icefish cardiovascular system
371 12.3.5 Compensatory adjustment of the icefish cardiovascular system in a regime of reduced interspecific competition? Enter Dr. NO
371 12.3.6 Haemoproteins
NO metabolism
and icefish evolution
372 12.3.7 Icefishes and erythropoietic gene discovery
372 12.3.8 Summary comments: haemoprotein loss in Antarctic icefishes
374 12.4 Concluding remarks
374 Acknowledgements
374 Dedication
374 References
374 13 MECHANISMS DEFINING THERMAL LIMITS AND ADAPTATION IN MARINE ECTOTHERMS: AN INTEGRATIVE VIEW
379 Hans O. PEURortner
Lloyd S. Peck and George N. Somero 13.1 Introduction: climate-dependent evolution of antarctic fauna
379 13.2 Phenomena of thermal specialization and limitation
382 13.2.1 Molecular and membrane aspects
383 13.2.2 Genomic aspects: gene expression and loss of genetic information
390 13.2.3 From molecular to systemic aspects: thermal limitation
393 13.2.4 From molecular to systemic aspects: thermal adaptation of performance capacity
397 13.2.5 Ecological implications
399 13.2.6 Integration of phenomena: concepts
results and perspectives
405 Acknowledgements
409 References
409 14 EVOLUTION AND BIODIVERSITY OF ANTARCTIC ORGANISMS
417 Alex D. Rogers 14.1 Introduction
417 14.2 The antarctic biota
418 14.3 The break-up of gondwana and the evolution of the southern hemisphere biota
420 14.3.1 Vicariance versus dispersal
420 14.3.2 Dispersal mechanisms
421 14.4 The evolution and biodiversity of the terrestrial sub-antarctic and antarctic biota
423 14.4.1 Plants
423 14.4.2 Animals
427 14.5 The marine environment
432 14.5.1 Biogeography and macroevolution
432 14.5.2 Notothenioid fish
432 14.5.3 Birds
435 14.5.4 Marine invertebrates
436 14.5.5 The molecular ecology and phylogeography of the marine biota
437 14.5.6 Patterns of genetic variation in marine species
448 14.6 Antarctica: a climatic crucible of evolution
450 14.7 The historical constraints on adaptation to present climate change
453 14.8 Future directions for research
453 References
454 PART 4 CONSERVATION AND MANAGEMENT ASPECTS
469 15 BIOGEOGRAPHY AND REGIONAL CLASSIFICATIONS OF ANTARCTICA
471 P. Convey
D.K.A. Barnes
H.J. Griffiths
S.M. Grant
K. Linse and D.N. Thomas 15.1 Introduction
471 15.2 Historical background
474 15.2.1 Physical regions in the marine environment
474 15.2.2 Smaller-scale regionalization within the Antarctic marine environment
474 15.2.3 Physical regions in the littoral environment
475 15.2.4 Physical regions in the terrestrial environment
475 15.3 Data availability
476 15.4 Different realms in the marine and terrestrial environments
477 15.4.1 Pelagic realm
477 15.4.2 Sea ice
478 15.4.3 Benthic realm
479 15.4.4 The terrestrial environment
479 15.4.5 Biogeographical patterns in the terrestrial environment
480 15.4.6 Biogeographic patterns in the marine environment
481 15.5 Overview
485 Acknowledgements
486 References
486 16 CONSERVATION AND MANAGEMENT OF ANTARCTIC ECOSYSTEMS
492 Susie M. Grant
Pete Convey
Kevin A. Hughes
Richard A. Phillips and Phil N. Trathan 16.1 Introduction
492 16.2 Legal frameworks for conservation and management
495 16.2.1 Early regulation of marine living resource harvesting
495 16.2.2 The Antarctic Treaty System
497 16.2.3 Other (non-ATS) agreements and tools relevant to conservation and management
500 16.3 Conservation and management measures
502 16.3.1 Pollution and local disturbance
502 16.3.2 Biosecurity and non-native species
505 16.3.3 Conservation and management of marine living resources
505 16.3.4 Conservation of other individual species
507 16.3.5 Protected areas
509 16.4 Conservation science and monitoring
512 16.5 Future challenges
515 16.6 Conclusions
520 Acknowledgements
521 References
521 Index
526