This book explores new experimental techniques and theoretical models to deepen an understanding of radiation effects and ion interaction processes in order to design materials for devices for the emerging quantum technology era.
This book explores new experimental techniques and theoretical models to deepen an understanding of radiation effects and ion interaction processes in order to design materials for devices for the emerging quantum technology era.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
David Jamieson is a Professor of Physics at the University of Melbourne. He served as President of the Australian Institute of Physics from 2005 to 2006 and is a Fellow of the AIP and the Institute of Physics UK. From 2008 to 2013, he served as the Head of the School of Physics at the University of Melbourne. His research expertise in the field of ion beam physics was applied to test some of the key functions of a revolutionary quantum computer constructed in silicon at the Australian Research Centre of Excellence for Quantum Computation and Communication Technology where he is a chief investigator and programme manager. Andrew Anthony Bettiol is an Associate Professor at the National University of Singapore. He is a principal investigator at the Centre for Ion Beam Applications (CIBA), Singapore, a multi-disciplinary research centre aimed at developing new technologies based on fast protons and ions, and simultaneously undertaking research into novel applications where proton or ion-based technologies provide a unique cutting edge. His current research explores nuclear microscopy in addition to the ion beam modification of materials - modifying optical, electrical, and magnetic properties of materials including bulk materials, semiconductors, non-linear optical materials and 2D materials. André Schleife is an Associate Professor at the University of Illinois Urbana-Champaign, United States. His research focus on computational material science and electronic and accelerated materials. He received the 2023 Dean's Award for Excellence in Research. His group uses advanced computation to understand and predict this intricate interplay for materials in electronic and energy applications and under extreme conditions. They study electronic excitations, triggered by interaction with electromagnetic and particle radiation, and subsequent femto-second relaxation processes.
Inhaltsangabe
Chapter 1: Introduction to Ion Beams and Quantum Technology. Chapter 2: Predictive Simulations of Electronic and Atomic Phenomena of Particle Radiation. Chapter 3: Introduction to Single Ion Techniques with Focused Ion Beams. Chapter 4: Quantum Communication and Sensing Based on Colour Centers in Wide-Bandgap Semiconductors. Chapter 5: Applications of Ion Irradiation for Thin-Film Oxides. Chapter 6: Single Implanted Ions for Qubits: Technology and Applications. Chapter 7: Dynamics of Radiation Effects in Silicon Studied with Pulsed Ion Beams and Ion Beam Induced Charge Collection.
Chapter 1: Introduction to Ion Beams and Quantum Technology. Chapter 2: Predictive Simulations of Electronic and Atomic Phenomena of Particle Radiation. Chapter 3: Introduction to Single Ion Techniques with Focused Ion Beams. Chapter 4: Quantum Communication and Sensing Based on Colour Centers in Wide-Bandgap Semiconductors. Chapter 5: Applications of Ion Irradiation for Thin-Film Oxides. Chapter 6: Single Implanted Ions for Qubits: Technology and Applications. Chapter 7: Dynamics of Radiation Effects in Silicon Studied with Pulsed Ion Beams and Ion Beam Induced Charge Collection.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826