Jacob Cohen, Patricia Cohen, Stephen G. West
Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences
Jacob Cohen, Patricia Cohen, Stephen G. West
Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Classic text on applied multiple regression considered the bible among graduate students and researchers.
Andere Kunden interessierten sich auch für
- Geoff CummingIntroduction to the New Statistics97,99 €
- Geoff CummingIntroduction to the New Statistics96,99 €
- Steven G. HeeringaApplied Survey Data Analysis96,99 €
- Steven G. HeeringaApplied Survey Data Analysis51,99 €
- Kimmo VehkalahtiMultivariate Analysis for the Behavioral Sciences, Second Edition101,99 €
- Kimmo VehkalahtiMultivariate Analysis for the Behavioral Sciences, Second Edition53,99 €
- Thomas D. WickensThe Geometry of Multivariate Statistics152,99 €
-
-
-
Classic text on applied multiple regression considered the bible among graduate students and researchers.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis Inc
- 3 ed
- Seitenzahl: 736
- Erscheinungstermin: 1. August 2002
- Englisch
- Abmessung: 259mm x 181mm x 48mm
- Gewicht: 1540g
- ISBN-13: 9780805822236
- ISBN-10: 0805822232
- Artikelnr.: 22345362
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Taylor & Francis Inc
- 3 ed
- Seitenzahl: 736
- Erscheinungstermin: 1. August 2002
- Englisch
- Abmessung: 259mm x 181mm x 48mm
- Gewicht: 1540g
- ISBN-13: 9780805822236
- ISBN-10: 0805822232
- Artikelnr.: 22345362
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Jacob Cohen (Author) , Patricia Cohen (Author) , Stephen G. West (Author) , Leona S. Aiken (Author)
Contents: Preface. Introduction. Bivariate Correlation and Regression.
Multiple Regression/Correlation With Two or More Independent Variables.
Data Visualization, Exploration, and Assumption Checking: Diagnosing and
Solving Regression Problems I. Data-Analytic Strategies Using Multiple
Regression/Correlation. Quantitative Scales, Curvilinear Relationships, and
Transformations. Interactions Among Continuous Variables. Categorical or
Nominal Independent Variables. Interactions With Categorical Variables.
Outliers and Multicollinearity: Diagnosing and Solving Regression Problems
II. Missing Data. Multiple Regression/Correlation and Causal Models.
Alternative Regression Models: Logistic, Poisson Regression, and the
Generalized Linear Model. Random Coefficient Regression and Multilevel
Models. Longitudinal Regression Methods. Multiple Dependent Variables: Set
Correlation. Appendices: The Mathematical Basis for Multiple
Regression/Correlation and Identification of the Inverse Matrix Elements.
Determination of the Inverse Matrix and Applications Thereof.
Multiple Regression/Correlation With Two or More Independent Variables.
Data Visualization, Exploration, and Assumption Checking: Diagnosing and
Solving Regression Problems I. Data-Analytic Strategies Using Multiple
Regression/Correlation. Quantitative Scales, Curvilinear Relationships, and
Transformations. Interactions Among Continuous Variables. Categorical or
Nominal Independent Variables. Interactions With Categorical Variables.
Outliers and Multicollinearity: Diagnosing and Solving Regression Problems
II. Missing Data. Multiple Regression/Correlation and Causal Models.
Alternative Regression Models: Logistic, Poisson Regression, and the
Generalized Linear Model. Random Coefficient Regression and Multilevel
Models. Longitudinal Regression Methods. Multiple Dependent Variables: Set
Correlation. Appendices: The Mathematical Basis for Multiple
Regression/Correlation and Identification of the Inverse Matrix Elements.
Determination of the Inverse Matrix and Applications Thereof.
Contents: Preface. Introduction. Bivariate Correlation and Regression.
Multiple Regression/Correlation With Two or More Independent Variables.
Data Visualization, Exploration, and Assumption Checking: Diagnosing and
Solving Regression Problems I. Data-Analytic Strategies Using Multiple
Regression/Correlation. Quantitative Scales, Curvilinear Relationships, and
Transformations. Interactions Among Continuous Variables. Categorical or
Nominal Independent Variables. Interactions With Categorical Variables.
Outliers and Multicollinearity: Diagnosing and Solving Regression Problems
II. Missing Data. Multiple Regression/Correlation and Causal Models.
Alternative Regression Models: Logistic, Poisson Regression, and the
Generalized Linear Model. Random Coefficient Regression and Multilevel
Models. Longitudinal Regression Methods. Multiple Dependent Variables: Set
Correlation. Appendices: The Mathematical Basis for Multiple
Regression/Correlation and Identification of the Inverse Matrix Elements.
Determination of the Inverse Matrix and Applications Thereof.
Multiple Regression/Correlation With Two or More Independent Variables.
Data Visualization, Exploration, and Assumption Checking: Diagnosing and
Solving Regression Problems I. Data-Analytic Strategies Using Multiple
Regression/Correlation. Quantitative Scales, Curvilinear Relationships, and
Transformations. Interactions Among Continuous Variables. Categorical or
Nominal Independent Variables. Interactions With Categorical Variables.
Outliers and Multicollinearity: Diagnosing and Solving Regression Problems
II. Missing Data. Multiple Regression/Correlation and Causal Models.
Alternative Regression Models: Logistic, Poisson Regression, and the
Generalized Linear Model. Random Coefficient Regression and Multilevel
Models. Longitudinal Regression Methods. Multiple Dependent Variables: Set
Correlation. Appendices: The Mathematical Basis for Multiple
Regression/Correlation and Identification of the Inverse Matrix Elements.
Determination of the Inverse Matrix and Applications Thereof.