- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
While preserving the clear, accessible style of previous editions, this volume reflects the latest developments in computer-intensive methods that deal with intractable analytical problems and unwieldy data sets.
Andere Kunden interessierten sich auch für
- Joseph HilbeMethods of Statistical Model Estimation129,99 €
- Barbel Finkenstadt / Leonhard Held / Valerie Isham (eds.)Statistical Methods for Spatio-Temporal Systems203,99 €
- Torsten HothornA Handbook of Statistical Analyses Using R272,99 €
- Alan M PolanskyIntroduction to Statistical Limit Theory202,99 €
- Helio S MigonStatistical Inference142,99 €
- Kelly H ZouStatistical Evaluation of Diagnostic Performance160,99 €
- A Bradley DuthieFundamental Statistical Concepts and Techniques in the Biological and Environmental Sciences194,99 €
-
-
-
While preserving the clear, accessible style of previous editions, this volume reflects the latest developments in computer-intensive methods that deal with intractable analytical problems and unwieldy data sets.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: CRC Press
- 4th edition
- Seitenzahl: 542
- Erscheinungstermin: 6. März 2007
- Englisch
- Abmessung: 238mm x 166mm x 33mm
- Gewicht: 907g
- ISBN-13: 9781584887010
- ISBN-10: 158488701X
- Artikelnr.: 23036430
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: CRC Press
- 4th edition
- Seitenzahl: 542
- Erscheinungstermin: 6. März 2007
- Englisch
- Abmessung: 238mm x 166mm x 33mm
- Gewicht: 907g
- ISBN-13: 9781584887010
- ISBN-10: 158488701X
- Artikelnr.: 23036430
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Peter Sprent, Nigel C. Smeeton
Some basic concepts. Fundamentals of nonparametric methods. Location
inference for single samples. Other single-sample inferences. Methods for
paired samples. Methods for two independent samples. Basic tests for three
or more samples. Analysis of structured data. Analysis of survival data.
Correlation and concordance. Bivariate linear regression. Categorical data.
Association in categorical data. Robust estimation. Modern nonparametrics.
inference for single samples. Other single-sample inferences. Methods for
paired samples. Methods for two independent samples. Basic tests for three
or more samples. Analysis of structured data. Analysis of survival data.
Correlation and concordance. Bivariate linear regression. Categorical data.
Association in categorical data. Robust estimation. Modern nonparametrics.
1 Introducing nonparametric methods.- 1.1 Basic statistics.- 1.2 Hypothesis tests.- 1.3 Estimation.- 1.4 Samples and populations.- 1.5 Further reading.- 1.6 Computers and nonparametric methods.- Exercises.- 2 Location estimates for single samples.- 2.1 The sign test.- 2.2 Inferences about medians based on ranks.- 2.3 Other location estimators.- 2.4 Fields of application.- Exercises.- 3 Distribution tests and rank transformations for single samples.- 3.1 Matching samples to distributions.- 3.2 Robustness.- 3.3 Transformations of ranks.- 3.4 Practical implications of efficiency.- 3.5 Modified assumptions.- 3.6 Fields of application.- Exercises.- 4 Methods for paired samples.- 4.1 Comparisons in pairs.- 4.2 A less obvious use of the sign test.- 4.3 Fields of application.- Exercises.- 5 Tests and estimation for two independent samples.- 5.1 Location tests and estimates.- 5.2 Wilcoxon-Mann-Whitney confidence intervals.- 5.3 Tests on functions of ranks.- 5.4 Tests for equality of variance.- 5.5 A test for a common distribution.- 5.6 Fields of application.- Exercises.- 6 Three or more samples.- 6.1 Possible extensions.- 6.2 Location tests for independent samples.- 6.3 Tests for heterogeneity of variance for independent samples.- 6.4 Further tests for several independent samples.- 6.5 Location comparisons for related samples.- 6.6 Fields of application.- Exercises.- 7 Bivariate and multivariate data.- 7.1 Correlation in bivariate data.- 7.2 Nonparametric bivariate linear regression.- 7.3 Monotonie regression.- 7.4 Multivariate data.- 7.5 Fields of application.- Exercises.- 8 Counts and categories.- 8.1 Categorical data.- 8.2 Tests for independence in two-way tables.- 8.3 The log-linear model.- 8.4 Goodness of fit tests for discrete data.- 8.5 Fields of application.-Exercises.- 9 Robustness, jackknives and bootstraps.- 9.1 The computer and robustness.- 9.2 Jackknives and bootstraps.- 9.3 Fields of application.- Exercises.- 10 Looking ahead.- 10.1 Nonparametric methods in a wider context.- 10.2 Developments from basic techniques.- 10.3 More sophisticated developments.- 10.4 The Bayesian approach.- A1 Random variables.- A2 Permutations and combinations.- A6 Least squares regression.- A7 Data sets.- A8 Tables of critical values for nonparametric methods.- References.- Solutions to odd-numbered exercises.
Some basic concepts. Fundamentals of nonparametric methods. Location
inference for single samples. Other single-sample inferences. Methods for
paired samples. Methods for two independent samples. Basic tests for three
or more samples. Analysis of structured data. Analysis of survival data.
Correlation and concordance. Bivariate linear regression. Categorical data.
Association in categorical data. Robust estimation. Modern nonparametrics.
inference for single samples. Other single-sample inferences. Methods for
paired samples. Methods for two independent samples. Basic tests for three
or more samples. Analysis of structured data. Analysis of survival data.
Correlation and concordance. Bivariate linear regression. Categorical data.
Association in categorical data. Robust estimation. Modern nonparametrics.
1 Introducing nonparametric methods.- 1.1 Basic statistics.- 1.2 Hypothesis tests.- 1.3 Estimation.- 1.4 Samples and populations.- 1.5 Further reading.- 1.6 Computers and nonparametric methods.- Exercises.- 2 Location estimates for single samples.- 2.1 The sign test.- 2.2 Inferences about medians based on ranks.- 2.3 Other location estimators.- 2.4 Fields of application.- Exercises.- 3 Distribution tests and rank transformations for single samples.- 3.1 Matching samples to distributions.- 3.2 Robustness.- 3.3 Transformations of ranks.- 3.4 Practical implications of efficiency.- 3.5 Modified assumptions.- 3.6 Fields of application.- Exercises.- 4 Methods for paired samples.- 4.1 Comparisons in pairs.- 4.2 A less obvious use of the sign test.- 4.3 Fields of application.- Exercises.- 5 Tests and estimation for two independent samples.- 5.1 Location tests and estimates.- 5.2 Wilcoxon-Mann-Whitney confidence intervals.- 5.3 Tests on functions of ranks.- 5.4 Tests for equality of variance.- 5.5 A test for a common distribution.- 5.6 Fields of application.- Exercises.- 6 Three or more samples.- 6.1 Possible extensions.- 6.2 Location tests for independent samples.- 6.3 Tests for heterogeneity of variance for independent samples.- 6.4 Further tests for several independent samples.- 6.5 Location comparisons for related samples.- 6.6 Fields of application.- Exercises.- 7 Bivariate and multivariate data.- 7.1 Correlation in bivariate data.- 7.2 Nonparametric bivariate linear regression.- 7.3 Monotonie regression.- 7.4 Multivariate data.- 7.5 Fields of application.- Exercises.- 8 Counts and categories.- 8.1 Categorical data.- 8.2 Tests for independence in two-way tables.- 8.3 The log-linear model.- 8.4 Goodness of fit tests for discrete data.- 8.5 Fields of application.-Exercises.- 9 Robustness, jackknives and bootstraps.- 9.1 The computer and robustness.- 9.2 Jackknives and bootstraps.- 9.3 Fields of application.- Exercises.- 10 Looking ahead.- 10.1 Nonparametric methods in a wider context.- 10.2 Developments from basic techniques.- 10.3 More sophisticated developments.- 10.4 The Bayesian approach.- A1 Random variables.- A2 Permutations and combinations.- A6 Least squares regression.- A7 Data sets.- A8 Tables of critical values for nonparametric methods.- References.- Solutions to odd-numbered exercises.