- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book is a product of the understanding I developed of stress analysis applied to plastics, while at work at L. J. Broutman and Associates (UBA) and as a lecturer in the seminars on this topic co-sponsored by UBA and Society of Plastics Engineers. I believe that by its extent and level of treatment, this book would serve as an easy-to-read desktop reference for professionals, as well as a text book at the junior or senior level in undergraduate programs. The main theme of this book is what to do with computed stress. To approach the theme effectively, I have taken the "stress category ap…mehr
Andere Kunden interessierten sich auch für
- Dietrich MunzCeramics83,99 €
- Lauge Fuglsang NielsenComposite Materials83,99 €
- Stefan Jan KowalskiThermomechanics of Drying Processes83,99 €
- Stefan Jan KowalskiThermomechanics of Drying Processes74,99 €
- Guiseppe Saccomandi / Raymond W. Ogden (eds.)Mechanics and Thermomechanics of Rubberlike Solids74,99 €
- Huang YuanNumerical Assessments of Cracks in Elastic-Plastic Materials125,99 €
- Alexander Y. MalkinRheology334,99 €
-
-
-
This book is a product of the understanding I developed of stress analysis applied to plastics, while at work at L. J. Broutman and Associates (UBA) and as a lecturer in the seminars on this topic co-sponsored by UBA and Society of Plastics Engineers. I believe that by its extent and level of treatment, this book would serve as an easy-to-read desktop reference for professionals, as well as a text book at the junior or senior level in undergraduate programs. The main theme of this book is what to do with computed stress. To approach the theme effectively, I have taken the "stress category ap proach" to stress analysis. Such an approach is being successfully used in the nuclear power field. In plastics, this approach helps in the prediction of long term behavior of structures. To maintain interest I have limited derivations and proofs to a minimum, and provided them, if at all, as flow charts. In this way, I believe that one can see better the connection between the variables, assumptions, and mathematics.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer / Springer US / Springer, Berlin
- Artikelnr. des Verlages: 978-0-442-23907-7
- 1993.
- Seitenzahl: 616
- Erscheinungstermin: 28. Februar 1993
- Englisch
- Abmessung: 241mm x 160mm x 43mm
- Gewicht: 1188g
- ISBN-13: 9780442239077
- ISBN-10: 0442239076
- Artikelnr.: 21998364
- Verlag: Springer / Springer US / Springer, Berlin
- Artikelnr. des Verlages: 978-0-442-23907-7
- 1993.
- Seitenzahl: 616
- Erscheinungstermin: 28. Februar 1993
- Englisch
- Abmessung: 241mm x 160mm x 43mm
- Gewicht: 1188g
- ISBN-13: 9780442239077
- ISBN-10: 0442239076
- Artikelnr.: 21998364
1. Basic Concepts: Perspectives in Elasticity Theory.- 1.1 Introduction.- 1.2 Uniqueness of Plastics Stress Analysis.- 1.3 Similarities between Plastics and Metals.- 1.4 Significance of Calculated Stress and Strain.- 1.5 The Basic Complexity of Stress Analysis.- 1.6 What Is Stress?.- 1.7 What Is Strain?.- 1.8 Commentary on the Definitions.- 1.9 Equilibrium.- 1.10 Hooke's Law.- 1.11 Plane Stress and Plane Strain.- 1.12 Analysis of Stress at a Point.- 1.13 Representation by Matrices.- 1.14 Transformation Using Matrices.- 1.15 Compatibility.- 1.16 Framework of Linear Elasticity Theory.- References.- Exercises.- 2. Applications of Linear Elastic Behavior.- 2.1 Introduction.- 2.2 Bending of Beams.- 2.3 The Unit Load Method (ULM).- 2.4 Application to Piping Flexibility Analysis.- 2.5 Problems in Polar Coordinates.- 2.6 Thick Pressurized Pipe.- 2.7 Rotating Cylinders.- 2.8 Axisymmetric Shell Problems.- 2.9 Structural Discontinuity-The Concept.- 2.10 Applications in the Theory of Plates.- References.- Exercises.- 3. Beyond Elastic Behavior.- 3.1 Introduction.- 3.2 Onset of Yield.- 3.3 Post-Yield Stress-Strain Relationship.- 3.4 Crazing.- References.- Exercises.- 4. Rationale of Stress Analysis.- 4.1 Design by Analysis.- 4.2 Objectives of Stress Analysis.- 4.3 Factor of Safety (FOS).- 4.4 Basis for Factor of Safety.- 4.5 Integration of Stress Analysis with Design.- 4.6 Stress Categories.- 4.7 How to Identify Stress Categories.- References.- Exercises.- 5. Applied Viscoelasticity.- 5.1 Introduction.- 5.2 Aspects of Viscoelasticity.- 5.3 Viscoelastic Models.- 5.4 Spring Dashpot Models.- 5.5 The Time Spectra Concept.- 5.6 Dynamic Behavior of Linear Viscoelastic Materials.- 5.7 Boltzmann's Superposition Principle.- 5.8 Use of Laplace Transforms in BSP.- 5.9 The CorrespondencePrinciple.- 5.10 Correspondence Principle for 3-D Viscoelasticity.- 5.11 Pseudoelasticity.- 5.12 An Interim Study.- 5.13 Comments on the Use of Pseudoelasticity.- 5.14 Findley's Constants.- 5.15 Methods of Determining E(T).- 5.16 Concluding Remarks.- References.- Exercises.- 6. Fracture Mechanics.- 6.1 Introduction.- 6.2 An Outline.- 6.3 Strain Energy Release Rate Criterion.- 6.4 Stress Analysis of Cracks.- 6.5 The K1 or the Stress Intensity Criterion.- 6.6 The J-Integral Criterion.- 6.7 The CTOD Criterion.- 6.8 Remarks on the Fracture Criteria.- 6.9 More about G.- 6.10 Calculation of K.- 6.11 A Few Useful Results.- 6.12 Principle of Superposition for Calculating K.- 6.13 Concept of Leak-Before-Break.- 6.14 Fracture Toughness for Light Weight Designs.- 6.15 Effects of Crack Tip Plasticity.- 6.16 Shape of Plastic Zone.- 6.17 Accounting for Plastic Effects.- 6.18 Contained Plasticity.- 6.19 Crack Opening Displacement (COD).- 6.20 Fracture Initiation Process-Crazing.- 6.21 Fatigue.- 6.22 Conclusion.- References.- Exercises.- 7. Reinforced Plastics.- 7.1 Motivation.- 7.2 Hooke's Law for Orthotropy.- 7.3 Micromechanics-Moduli of Composites.- 7.4 Micromechanics-A Summary.- 7.5 Macromechanics of a U.D.L..- 7.6 Transformation of Elastic Moduli.- 7.7 Calculation of Stresses in a 1-2 System.- 7.8 The Meaning of v's and ij's.- 7.9 Failure Criteria.- 7.10 Factor of Safety (FOS).- 7.11 Failure Envelopes.- 7.12 Mechanics of Laminated Plates.- 7.13 Stress Analysis of a Laminate Point.- 7.14 Symmetric Laminates.- 7.15 Quasi-Isotropic Laminates.- 7.16 Hygrothermal (HT) Effects.- 7.17 Hygro-Thermal Stresses.- 7.18 Conclusion.- References.- Exercises.- 8. Finite Element Method: An Introduction.- 8.1 Motivation.- 8.2 Overview of FEM.- 8.3 Basics of FE Stress Analysis.- 8.4Discretization.- 8.5 Interpolation of Displacements.- 8.6 Calculation of Element Stiffness.- 8.7 Calculation of Element Load Vectors.- 8.8 Assembly of the Global Stiffness Matrix.- 8.9 The Nature of the Global Stiffness Matrix-[K].- 8.10 Displacement Boundary Conditions.- 8.11 Solution of the Unknown Displacements.- 8.12 Reactions, Strains, and Stresses.- 8.13 Post-Processing.- 8.14 Isoparametric Elements.- 8.15 The Gauss Quadrature.- 8.16 Conclusion.- References.- Exercises.- 9. Guidelines for Fe Analysis.- 9.1 Capabilities of a Modeling Software.- 9.2 Do's and Don't's of FEA.- 9.3 Current Developments 542References.- Exercises.- Appendix 1. Cartesian Tensor Analysis.- Appendix 2. Methods in Beam Theory.- Appendix 3. Laplace Transforms.- Appendix 4. Stress Intensity Factors for a Few Cases.
1. Basic Concepts: Perspectives in Elasticity Theory.- 1.1 Introduction.- 1.2 Uniqueness of Plastics Stress Analysis.- 1.3 Similarities between Plastics and Metals.- 1.4 Significance of Calculated Stress and Strain.- 1.5 The Basic Complexity of Stress Analysis.- 1.6 What Is Stress?.- 1.7 What Is Strain?.- 1.8 Commentary on the Definitions.- 1.9 Equilibrium.- 1.10 Hooke's Law.- 1.11 Plane Stress and Plane Strain.- 1.12 Analysis of Stress at a Point.- 1.13 Representation by Matrices.- 1.14 Transformation Using Matrices.- 1.15 Compatibility.- 1.16 Framework of Linear Elasticity Theory.- References.- Exercises.- 2. Applications of Linear Elastic Behavior.- 2.1 Introduction.- 2.2 Bending of Beams.- 2.3 The Unit Load Method (ULM).- 2.4 Application to Piping Flexibility Analysis.- 2.5 Problems in Polar Coordinates.- 2.6 Thick Pressurized Pipe.- 2.7 Rotating Cylinders.- 2.8 Axisymmetric Shell Problems.- 2.9 Structural Discontinuity-The Concept.- 2.10 Applications in the Theory of Plates.- References.- Exercises.- 3. Beyond Elastic Behavior.- 3.1 Introduction.- 3.2 Onset of Yield.- 3.3 Post-Yield Stress-Strain Relationship.- 3.4 Crazing.- References.- Exercises.- 4. Rationale of Stress Analysis.- 4.1 Design by Analysis.- 4.2 Objectives of Stress Analysis.- 4.3 Factor of Safety (FOS).- 4.4 Basis for Factor of Safety.- 4.5 Integration of Stress Analysis with Design.- 4.6 Stress Categories.- 4.7 How to Identify Stress Categories.- References.- Exercises.- 5. Applied Viscoelasticity.- 5.1 Introduction.- 5.2 Aspects of Viscoelasticity.- 5.3 Viscoelastic Models.- 5.4 Spring Dashpot Models.- 5.5 The Time Spectra Concept.- 5.6 Dynamic Behavior of Linear Viscoelastic Materials.- 5.7 Boltzmann's Superposition Principle.- 5.8 Use of Laplace Transforms in BSP.- 5.9 The CorrespondencePrinciple.- 5.10 Correspondence Principle for 3-D Viscoelasticity.- 5.11 Pseudoelasticity.- 5.12 An Interim Study.- 5.13 Comments on the Use of Pseudoelasticity.- 5.14 Findley's Constants.- 5.15 Methods of Determining E(T).- 5.16 Concluding Remarks.- References.- Exercises.- 6. Fracture Mechanics.- 6.1 Introduction.- 6.2 An Outline.- 6.3 Strain Energy Release Rate Criterion.- 6.4 Stress Analysis of Cracks.- 6.5 The K1 or the Stress Intensity Criterion.- 6.6 The J-Integral Criterion.- 6.7 The CTOD Criterion.- 6.8 Remarks on the Fracture Criteria.- 6.9 More about G.- 6.10 Calculation of K.- 6.11 A Few Useful Results.- 6.12 Principle of Superposition for Calculating K.- 6.13 Concept of Leak-Before-Break.- 6.14 Fracture Toughness for Light Weight Designs.- 6.15 Effects of Crack Tip Plasticity.- 6.16 Shape of Plastic Zone.- 6.17 Accounting for Plastic Effects.- 6.18 Contained Plasticity.- 6.19 Crack Opening Displacement (COD).- 6.20 Fracture Initiation Process-Crazing.- 6.21 Fatigue.- 6.22 Conclusion.- References.- Exercises.- 7. Reinforced Plastics.- 7.1 Motivation.- 7.2 Hooke's Law for Orthotropy.- 7.3 Micromechanics-Moduli of Composites.- 7.4 Micromechanics-A Summary.- 7.5 Macromechanics of a U.D.L..- 7.6 Transformation of Elastic Moduli.- 7.7 Calculation of Stresses in a 1-2 System.- 7.8 The Meaning of v's and ij's.- 7.9 Failure Criteria.- 7.10 Factor of Safety (FOS).- 7.11 Failure Envelopes.- 7.12 Mechanics of Laminated Plates.- 7.13 Stress Analysis of a Laminate Point.- 7.14 Symmetric Laminates.- 7.15 Quasi-Isotropic Laminates.- 7.16 Hygrothermal (HT) Effects.- 7.17 Hygro-Thermal Stresses.- 7.18 Conclusion.- References.- Exercises.- 8. Finite Element Method: An Introduction.- 8.1 Motivation.- 8.2 Overview of FEM.- 8.3 Basics of FE Stress Analysis.- 8.4Discretization.- 8.5 Interpolation of Displacements.- 8.6 Calculation of Element Stiffness.- 8.7 Calculation of Element Load Vectors.- 8.8 Assembly of the Global Stiffness Matrix.- 8.9 The Nature of the Global Stiffness Matrix-[K].- 8.10 Displacement Boundary Conditions.- 8.11 Solution of the Unknown Displacements.- 8.12 Reactions, Strains, and Stresses.- 8.13 Post-Processing.- 8.14 Isoparametric Elements.- 8.15 The Gauss Quadrature.- 8.16 Conclusion.- References.- Exercises.- 9. Guidelines for Fe Analysis.- 9.1 Capabilities of a Modeling Software.- 9.2 Do's and Don't's of FEA.- 9.3 Current Developments 542References.- Exercises.- Appendix 1. Cartesian Tensor Analysis.- Appendix 2. Methods in Beam Theory.- Appendix 3. Laplace Transforms.- Appendix 4. Stress Intensity Factors for a Few Cases.