Ce livre présente une vue d'ensemble de l'apprentissage profond qui adopte différentes perspectives telles que les techniques d'apprentissage profond de pointe, les approches d'apprentissage profond, les applications. En outre, les problèmes potentiels liés à la technologie de l'apprentissage profond. Cette recherche présente les réseaux neuronaux convolutifs (CNN), qui constituent le type de réseau d'apprentissage profond le plus utilisé. Une étude des architectures d'apprentissage profond CNN fréquemment rencontrées dans la littérature, ainsi que leurs forces et leurs limites, et décrit le développement des architectures CNN ainsi que leurs principales caractéristiques, par exemple AlexNet, VGG, ResNet, DenseNet, GoogLeNet, Inception : ResNet et Inception V3/ V4 ,SegNet ,U Net, Point CNN et MASK R-CNN .Une étude détaillée de l'application du réseau neuronal convolutif à la télédétection pour extraire des caractéristiques est également expliquée. Les défis rencontrés par le CNN ont été discutés
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.