Friedhelm Schwenker / Simone MarinaiSecond IAPR Workshop, ANNPR 2006, Ulm, Germany, August 31-September 2, 2006, Proceedings
Artificial Neural Networks in Pattern Recognition
Second IAPR Workshop, ANNPR 2006, Ulm, Germany, August 31-September 2, 2006, Proceedings
Herausgegeben:Schwenker, Friedhelm; Marinai, Simone
Friedhelm Schwenker / Simone MarinaiSecond IAPR Workshop, ANNPR 2006, Ulm, Germany, August 31-September 2, 2006, Proceedings
Artificial Neural Networks in Pattern Recognition
Second IAPR Workshop, ANNPR 2006, Ulm, Germany, August 31-September 2, 2006, Proceedings
Herausgegeben:Schwenker, Friedhelm; Marinai, Simone
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book constitutes the refereed proceedings of the Second IAPR Workshop on Artificial Neural Networks in Pattern Recognition, ANNPR 2006, held in Ulm, Germany in August/September 2006. The 26 revised papers presented were carefully reviewed and selected from 49 submissions. The papers are organized in topical sections on unsupervised learning, semi-supervised learning, supervised learning, support vector learning, multiple classifier systems, visual object recognition, and data mining in bioinformatics.
Andere Kunden interessierten sich auch für
- F. Acar SavaciArtificial Intelligence and Neural Networks42,99 €
- Hamed Habibi AghdamGuide to Convolutional Neural Networks61,99 €
- Hamed Habibi AghdamGuide to Convolutional Neural Networks41,99 €
- Petra Perner (Volume ed.)Advances in Data Mining - Theoretical Aspects and Applications41,99 €
- Neuroscience: From Neural Networks to Artificial Intelligence83,99 €
- Advances in Brain, Vision, and Artificial Intelligence81,99 €
- Petra Perner / Atsushi Imiya (eds.)Machine Learning and Data Mining in Pattern Recognition83,99 €
-
-
-
This book constitutes the refereed proceedings of the Second IAPR Workshop on Artificial Neural Networks in Pattern Recognition, ANNPR 2006, held in Ulm, Germany in August/September 2006. The 26 revised papers presented were carefully reviewed and selected from 49 submissions. The papers are organized in topical sections on unsupervised learning, semi-supervised learning, supervised learning, support vector learning, multiple classifier systems, visual object recognition, and data mining in bioinformatics.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Lecture Notes in Computer Science 4087
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 11829898, 978-3-540-37951-5
- 2006
- Seitenzahl: 316
- Erscheinungstermin: 29. August 2006
- Englisch
- Abmessung: 235mm x 155mm x 18mm
- Gewicht: 445g
- ISBN-13: 9783540379515
- ISBN-10: 3540379517
- Artikelnr.: 20946200
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- Lecture Notes in Computer Science 4087
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 11829898, 978-3-540-37951-5
- 2006
- Seitenzahl: 316
- Erscheinungstermin: 29. August 2006
- Englisch
- Abmessung: 235mm x 155mm x 18mm
- Gewicht: 445g
- ISBN-13: 9783540379515
- ISBN-10: 3540379517
- Artikelnr.: 20946200
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Friedhelm Schwenker, University of Ulm, Germany / Simone Marinai, University of Florence, Italy
Unsupervised Learning.- Simple and Effective Connectionist Nonparametric Estimation of Probability Density Functions.- Comparison Between Two Spatio-Temporal Organization Maps for Speech Recognition.- Adaptive Feedback Inhibition Improves Pattern Discrimination Learning.- Semi-supervised Learning.- Supervised Batch Neural Gas.- Fuzzy Labeled Self-Organizing Map with Label-Adjusted Prototypes.- On the Effects of Constraints in Semi-supervised Hierarchical Clustering.- A Study of the Robustness of KNN Classifiers Trained Using Soft Labels.- Supervised Learning.- An Experimental Study on Training Radial Basis Functions by Gradient Descent.- A Local Tangent Space Alignment Based Transductive Classification Algorithm.- Incremental Manifold Learning Via Tangent Space Alignment.- A Convolutional Neural Network Tolerant of Synaptic Faults for Low-Power Analog Hardware.- Ammonium Estimation in a Biological Wastewater Plant Using Feedforward Neural Networks.- Support Vector Learning.- Support Vector Regression Using Mahalanobis Kernels.- Incremental Training of Support Vector Machines Using Truncated Hypercones.- Fast Training of Linear Programming Support Vector Machines Using Decomposition Techniques.- Multiple Classifier Systems.- Multiple Classifier Systems for Embedded String Patterns.- Multiple Neural Networks for Facial Feature Localization in Orientation-Free Face Images.- Hierarchical Neural Networks Utilising Dempster-Shafer Evidence Theory.- Combining MF Networks: A Comparison Among Statistical Methods and Stacked Generalization.- Visual Object Recognition.- Object Detection and Feature Base Learning with Sparse Convolutional Neural Networks.- Visual Classification of Images by Learning Geometric Appearances Through Boosting.- An Eye Detection System Based on Neural Autoassociators.- Orientation Histograms for Face Recognition.- Data Mining in Bioinformatics.- An Empirical Comparison of Feature Reduction Methods in the Context of Microarray Data Classification.- Unsupervised Feature Selection for Biomarker Identification in Chromatography and Gene Expression Data.- Learning and Feature Selection Using the Set Covering Machine with Data-Dependent Rays on Gene Expression Profiles.
Unsupervised Learning.- Simple and Effective Connectionist Nonparametric Estimation of Probability Density Functions.- Comparison Between Two Spatio-Temporal Organization Maps for Speech Recognition.- Adaptive Feedback Inhibition Improves Pattern Discrimination Learning.- Semi-supervised Learning.- Supervised Batch Neural Gas.- Fuzzy Labeled Self-Organizing Map with Label-Adjusted Prototypes.- On the Effects of Constraints in Semi-supervised Hierarchical Clustering.- A Study of the Robustness of KNN Classifiers Trained Using Soft Labels.- Supervised Learning.- An Experimental Study on Training Radial Basis Functions by Gradient Descent.- A Local Tangent Space Alignment Based Transductive Classification Algorithm.- Incremental Manifold Learning Via Tangent Space Alignment.- A Convolutional Neural Network Tolerant of Synaptic Faults for Low-Power Analog Hardware.- Ammonium Estimation in a Biological Wastewater Plant Using Feedforward Neural Networks.- Support Vector Learning.- Support Vector Regression Using Mahalanobis Kernels.- Incremental Training of Support Vector Machines Using Truncated Hypercones.- Fast Training of Linear Programming Support Vector Machines Using Decomposition Techniques.- Multiple Classifier Systems.- Multiple Classifier Systems for Embedded String Patterns.- Multiple Neural Networks for Facial Feature Localization in Orientation-Free Face Images.- Hierarchical Neural Networks Utilising Dempster-Shafer Evidence Theory.- Combining MF Networks: A Comparison Among Statistical Methods and Stacked Generalization.- Visual Object Recognition.- Object Detection and Feature Base Learning with Sparse Convolutional Neural Networks.- Visual Classification of Images by Learning Geometric Appearances Through Boosting.- An Eye Detection System Based on Neural Autoassociators.- Orientation Histograms for Face Recognition.- Data Mining in Bioinformatics.- An Empirical Comparison of Feature Reduction Methods in the Context of Microarray Data Classification.- Unsupervised Feature Selection for Biomarker Identification in Chromatography and Gene Expression Data.- Learning and Feature Selection Using the Set Covering Machine with Data-Dependent Rays on Gene Expression Profiles.