117,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
59 °P sammeln
  • Broschiertes Buch

This volume provides the latest developments in the field of surface science and technology based on diazonium coupling agents as well as their precursors (e.g. aromatic amines). It presents new concepts of surface chemistry of diazonium salts and discusses their novel and challenging applications. The latest advances on surface modification with diazonium salts are discussed and various promising alternative surface modifiers such as iodonium salts are examined. This book demonstrates the universality of diazonium salts in the surface treatment of classical and emergent materials and it will…mehr

Produktbeschreibung
This volume provides the latest developments in the field of surface science and technology based on diazonium coupling agents as well as their precursors (e.g. aromatic amines). It presents new concepts of surface chemistry of diazonium salts and discusses their novel and challenging applications. The latest advances on surface modification with diazonium salts are discussed and various promising alternative surface modifiers such as iodonium salts are examined. This book demonstrates the universality of diazonium salts in the surface treatment of classical and emergent materials and it will be a great tool for researcher and graduates working in this field.
Autorenporträt
Mohamed M. Chehimi is Senior Research at French CNRS. He obtained a PhD in physical organic chemistry at the University Paris Diderot in 1988 and joined CNRS in 1989 for a permanent researcher position. His main research topics concern (i) the design of reactive and functional polymer and nanocomposite coatings, and (ii) the valorization of agrowastes into nanoparticle-loaded biochar for environmental applications. He has spent time and efforts developing aryldiazonium salts as new coupling agents in materials science. The applications encompass adsorbents, sensors and actuators, reactive fillers, antibacterial surfaces, electronic devices and supported nanocatalysts. He is an expert on X-ray photoelectron spectroscopy analysis of a broad range of materials including polymer thin films; polymer composites, nanomaterials and materials for sensor devices. Dr Chehimi has supervised over 25 PhD theses and collaborated with academic researchers from 20 countries. He has350+ research papers, 23 book chapters and 3 patents to his credit. He is the editor of four books and guest-edited six themed issues. He serves as Executive Editor-in-Chief of Chemistry Africa (Springer Nature) and Associate Editor of Surfaces (MDPI). Jean Pinson is Emeritus Professor at Université de Paris. He graduated in 1963 from Ecole Nationale des Industries Chimiques (Nancy, France). He obtained his PhD in 1969 from Université de Paris and spent one year as a postdoctoral fellow at University of Oklahoma. He became full professor in 1991. From 2004 on, he spent five years as a scientist at Alchimer (now Aveni) a start-up dedicated to microelectronics. His interests include electrochemistry in particular molecular organic chemistry, radical chemistry (SRN1 reactions) and surface chemistry. In 1992 he published the grafting of diazonium salts on surfaces a method now of wide use. He has published more than 190 papers, 9 patents, 12 reviews and book chapters and edited 3 books. Fatima Mousli has been awarded her PhD in Physico-Chemistry of Materials from the University of Mouloud Mammeri, Tizi-Ouzou, Algeria. This work was conducted within the framework of an international collaboration with ITODYS Lab, Université de Paris (Paris, France). Fatima Mousli has devoted her research to the development of new titania and titania-based heterostructure/conductive polymer nanocomposite and functional hybrid materials based on cotton fabrics for heterogeneous catalysis. One important aspect of her research is focused on the surface/interface chemistry of diazonium salts in view of tightly attaching conductive polymers to metal oxides to surfaces and therefore improving (photo)catalytic performances of titania-based materials. Fatima Mousli has published a series of articles on catalytic nanocomposites and hybrid structures in international peer-reviewed journals and a book chapter on polymer surface modification. Shealso serves as a peer reviewer for international chemistry journals.