122,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 2-4 Wochen
  • Gebundenes Buch

This book offers up novel research which uses analytical approaches to explore nonlinear features exhibited by various dynamic processes. Relevant to disciplines across engineering and physics, the asymptotic method combined with the multiple scale method is shown to be an efficient and intuitive way to approach mechanics.

Produktbeschreibung
This book offers up novel research which uses analytical approaches to explore nonlinear features exhibited by various dynamic processes. Relevant to disciplines across engineering and physics, the asymptotic method combined with the multiple scale method is shown to be an efficient and intuitive way to approach mechanics.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Jan Awrejcewicz is Head of the Department of Automation, Biomechanics and Mechatronics at Lodz University of Technology. His research covers mechanics, material science, biomechanics, applied mathematics, automation, physics and computer sciences, with his main focus being nonlinear processes. He has authored 850 journal papers and is Editor-in-Chief of three international journals. Additionally, Professor Awrejcewicz is recipient of numerous scientific awards including The Alexander von Humboldt Award for research and educational achievements. Roman Starosta is Professor at the Institute of Applied Mechanics, Poznan University of Technology (PUT), Poland, where he is the head of the Department of Technical Mechanics. His area of research includes dynamics of structures, fluid mechanics, asymptotic methods, and computational systems of algebra. Professor Starosta is a member of the main board of the Polish Society of Theoretical and Applied Mechanics, and chairman of several editions of the conference on Vibrations in Physical Systems. Gräyna Sypniewska-Kami¿ska is currently Associate Professor at Poznan University of Technology, and has been at the Institute of Applied Mechanics since 1990. Her area of research covers nonlinear dynamics, asymptotic methods, computer methods in the area of applied mechanics of continuous and discrete systems, and inverse problems of heat conduction. She teaches mechanics, analytical mechanics, elasticity theory, mathematical physics as well as algorithmics, programming languages, and computer graphics.