Edited by Dr. Takeyasu, with contributions from leading scientists in the field of nanobiology, this book provides an overview of modern atomic force microscopy (AFM) technologies. It covers basic AFM protocols, newly developed technologies, and recent applications of AFM technologies in biological sciences. There are many nanotechnology books that focus on materials, instruments, and applications in engineering and medicine, but only few of them are directed toward basic biological sciences. This book bridges that gap.
Edited by Dr. Takeyasu, with contributions from leading scientists in the field of nanobiology, this book provides an overview of modern atomic force microscopy (AFM) technologies. It covers basic AFM protocols, newly developed technologies, and recent applications of AFM technologies in biological sciences. There are many nanotechnology books that focus on materials, instruments, and applications in engineering and medicine, but only few of them are directed toward basic biological sciences. This book bridges that gap.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Kunio Takeyasu was trained as a zoologist and neuro-pharmacologist in his early career when he was a graduate student at Hiroshima University and Osaka University. After his postdoctoral research on the molecular and cell biological aspects of membrane proteins such as acetylcholine receptors and ion-motive ATPases at Cornell University and the Johns Hopkins University, he joined the University of Virginia as an assistant professor in 1988 and started to utilize atomic force microscopy (AFM) in biological studies. After four years of research and teaching at The Ohio State University, he moved to Kyoto University as a full professor in 1995. Since then, he has been developing technologies for biological application of AFM. His most recent research has been focused on single-molecule imaging of membrane proteins and chromatin at sub-second time region with nanometer space resolution. Prof. Takeyasu has been a member of the Biophysical Society and the American Society for Cell Biology.
Inhaltsangabe
Basics for AFM. A Short Story of AFM in Biology. Protocols for Specimen and Substrate Preparation, and Data Correction Methods. Chemical Modification of AFM Probe and Coupling with Biomolecules. Single Molecule Dissection and Isolation Based on AFM Nano-Manipulations. Development of AFM Technology: Imaging Dynamics and Complexities. Structural Biology with Cryo AFM and Computational Modeling. Development of Non-Contact High-Resolution AFM and its Biological Applications. Development of Recognition Imaging - From Molecule to Cells. Development of High-Speed AFM and Its Biological Applications. Real-Time AFM Combined with an Inverted Optical Microscope for Wetcell/Tissue Imaging. Imaging Membranes, Proteins and DNA. AFM imaging of Cells (Fixed and Living) and of Particularcellular Organelles and Compartments. Determination of the Architecture of Multi-Subunit Proteins Using AFM Imaging. Capturing Membrane Proteins at Work. Enzymes and DNA: Molecular Motors in Action. Genome Folding Mechanisms in the Three Domains of Life Revealed by AFM Imaging. Imaging, Force Spectroscopy and Physiology. Membrane Dynamics: Lipid-Protein Interaction Studied by AFM. Nano Surgery and Cytoskeletal Mechanics of Single Cell. Functional Investigations on Nuclear Pores with Atomic Force Microscopy. Mechanotransduction: Probing its Mechanisms at the Nanoscale using the Atomic Force Microscope.
Basics for AFM. A Short Story of AFM in Biology. Protocols for Specimen and Substrate Preparation, and Data Correction Methods. Chemical Modification of AFM Probe and Coupling with Biomolecules. Single Molecule Dissection and Isolation Based on AFM Nano-Manipulations. Development of AFM Technology: Imaging Dynamics and Complexities. Structural Biology with Cryo AFM and Computational Modeling. Development of Non-Contact High-Resolution AFM and its Biological Applications. Development of Recognition Imaging - From Molecule to Cells. Development of High-Speed AFM and Its Biological Applications. Real-Time AFM Combined with an Inverted Optical Microscope for Wetcell/Tissue Imaging. Imaging Membranes, Proteins and DNA. AFM imaging of Cells (Fixed and Living) and of Particularcellular Organelles and Compartments. Determination of the Architecture of Multi-Subunit Proteins Using AFM Imaging. Capturing Membrane Proteins at Work. Enzymes and DNA: Molecular Motors in Action. Genome Folding Mechanisms in the Three Domains of Life Revealed by AFM Imaging. Imaging, Force Spectroscopy and Physiology. Membrane Dynamics: Lipid-Protein Interaction Studied by AFM. Nano Surgery and Cytoskeletal Mechanics of Single Cell. Functional Investigations on Nuclear Pores with Atomic Force Microscopy. Mechanotransduction: Probing its Mechanisms at the Nanoscale using the Atomic Force Microscope.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497