74,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
37 °P sammeln
  • Broschiertes Buch

Design reuse techniques have become the subject of books, conferences, and podium discussions over the last few years. However, most discussions focus on higher-level abstraction like RTL descriptions, which can be synthesized. Design reuse is often seen as an add-on to normal design activity, or a special design task that is not an integrated part of the existing design flow. This may all be true for the ASIC world, but not for high-speed, high-performance microprocessors.
In the field of high-speed microprocessors, design reuse is an integrated part of the design flow. The method of
…mehr

Produktbeschreibung
Design reuse techniques have become the subject of books, conferences, and podium discussions over the last few years. However, most discussions focus on higher-level abstraction like RTL descriptions, which can be synthesized. Design reuse is often seen as an add-on to normal design activity, or a special design task that is not an integrated part of the existing design flow. This may all be true for the ASIC world, but not for high-speed, high-performance microprocessors.

In the field of high-speed microprocessors, design reuse is an integrated part of the design flow. The method of choice in this demanding field was, and is always, physical design reuse at the layout level. In the past, the practical implementations of this method were linear shrinks and the lambda approach. With the scaling of process technology down to 0.18 micron and below, this approach lost steam and became inefficient. The only viable solution is a method, which is now called Automatic Layout Modification (ALM). It combines compaction, mask manipulation, and correction with powerful capabilities.

Automatic Layout Modification, Including design reuse of the Alpha CPU in 0.13 micron SOI technology is a welcome effort to improving some of the practices in chip design today.