- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
A lucid and self-contained treatment of many key ideas in topological dynamics, achieved by focusing on equivalence relations and automorphisms.
Andere Kunden interessierten sich auch für
- Richard HammackHandbook of Product Graphs216,99 €
- H. EkstedtDynamic Models for the Inter-relations of Real and Financial Growth166,99 €
- Alexander SoiferThe New Mathematical Coloring Book166,99 €
- Asao AraiInequivalent Representations of Canonical Commutation and Anti-Commutation Relations103,99 €
- Erwin Herrick SchuylerNumber Relations (1905)37,99 €
- Arne BrondstedAn Introduction to Convex Polytopes69,99 €
- Asao AraiInequivalent Representations of Canonical Commutation and Anti-Commutation Relations103,99 €
-
-
-
A lucid and self-contained treatment of many key ideas in topological dynamics, achieved by focusing on equivalence relations and automorphisms.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 284
- Erscheinungstermin: 5. Juni 2014
- Englisch
- Abmessung: 229mm x 152mm x 17mm
- Gewicht: 465g
- ISBN-13: 9781107633223
- ISBN-10: 1107633222
- Artikelnr.: 40511828
- Verlag: Cambridge University Press
- Seitenzahl: 284
- Erscheinungstermin: 5. Juni 2014
- Englisch
- Abmessung: 229mm x 152mm x 17mm
- Gewicht: 465g
- ISBN-13: 9781107633223
- ISBN-10: 1107633222
- Artikelnr.: 40511828
David B. Ellis received his PhD in algebraic topology from the University of California, Berkeley. He has taught at a wide variety of institutions including Yale University, Vassar College, and Washington University in St Louis, and is currently a member of the faculty at Beloit College in Wisconsin. He has published papers in algebraic topology, foliations, fractal geometry and topological dynamics.
Part I. Universal Constructions: 1. The Stone-Cech compactification ßT; Appendix to Chapter 1. Ultrafilters and the construction of ßT; 2. Flows and their enveloping semigroups; 3. Minimal sets and minimal right ideals; 4. Fundamental notions; 5. Quasi-factors and the circle operator; Appendix to Chapter 5. The Vietoris topology on 2^X; Part II. Equivalence Relations and Automorphisms: 6. Quotient spaces and relative products; 7. Icers on M and automorphisms of M; 8. Regular flows; 9. The quasi-relative product; Part III. The
-Topology: 10. The
-topology on Aut(X); 11. The derived group; 12. Quasi-factors and the
-topology; Part IV. Subgroups of G and the Dynamics of Minimal Flows: 13. The proximal relation and the group P; 14. Distal flows and the group D; 15. Equicontinuous flows and the group E; Appendix to Chapter 15. Equicontinuity and the enveloping semigroup; 16. The regionally proximal relation; Part V. Extensions of Minimal Flows: 17. Open and highly proximal extensions; Appendix. Extremely disconnected flows; 18. Distal extensions of minimal flows; 19. Almost periodic extensions; 20. A tale of four theorems.
-Topology: 10. The
-topology on Aut(X); 11. The derived group; 12. Quasi-factors and the
-topology; Part IV. Subgroups of G and the Dynamics of Minimal Flows: 13. The proximal relation and the group P; 14. Distal flows and the group D; 15. Equicontinuous flows and the group E; Appendix to Chapter 15. Equicontinuity and the enveloping semigroup; 16. The regionally proximal relation; Part V. Extensions of Minimal Flows: 17. Open and highly proximal extensions; Appendix. Extremely disconnected flows; 18. Distal extensions of minimal flows; 19. Almost periodic extensions; 20. A tale of four theorems.
Part I. Universal Constructions: 1. The Stone-Cech compactification ßT; Appendix to Chapter 1. Ultrafilters and the construction of ßT; 2. Flows and their enveloping semigroups; 3. Minimal sets and minimal right ideals; 4. Fundamental notions; 5. Quasi-factors and the circle operator; Appendix to Chapter 5. The Vietoris topology on 2^X; Part II. Equivalence Relations and Automorphisms: 6. Quotient spaces and relative products; 7. Icers on M and automorphisms of M; 8. Regular flows; 9. The quasi-relative product; Part III. The
-Topology: 10. The
-topology on Aut(X); 11. The derived group; 12. Quasi-factors and the
-topology; Part IV. Subgroups of G and the Dynamics of Minimal Flows: 13. The proximal relation and the group P; 14. Distal flows and the group D; 15. Equicontinuous flows and the group E; Appendix to Chapter 15. Equicontinuity and the enveloping semigroup; 16. The regionally proximal relation; Part V. Extensions of Minimal Flows: 17. Open and highly proximal extensions; Appendix. Extremely disconnected flows; 18. Distal extensions of minimal flows; 19. Almost periodic extensions; 20. A tale of four theorems.
-Topology: 10. The
-topology on Aut(X); 11. The derived group; 12. Quasi-factors and the
-topology; Part IV. Subgroups of G and the Dynamics of Minimal Flows: 13. The proximal relation and the group P; 14. Distal flows and the group D; 15. Equicontinuous flows and the group E; Appendix to Chapter 15. Equicontinuity and the enveloping semigroup; 16. The regionally proximal relation; Part V. Extensions of Minimal Flows: 17. Open and highly proximal extensions; Appendix. Extremely disconnected flows; 18. Distal extensions of minimal flows; 19. Almost periodic extensions; 20. A tale of four theorems.