Patrick Suppes
Axiomatic Set Theory
18,99 €
inkl. MwSt.
Versandfertig in 2-4 Wochen
9 °P sammeln
Patrick Suppes
Axiomatic Set Theory
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Geared toward upper-level undergraduates and graduate students, this treatment examines the basic paradoxes and history of set theory and advanced topics such as relations and functions, equipollence, more. 1960 edition.
Andere Kunden interessierten sich auch für
- José L GarciáIntuitive Axiomatic Set Theory90,99 €
- D. C. MakinsonTopics in Modern Logic36,99 €
- Paul R. HalmosNaive Set Theory14,99 €
- Robert R. StollSet Theory and Logic23,99 €
- Charles PinterA Book of Set Theory18,99 €
- Paul J CohenSet Theory and the Continuum Hypothesis14,99 €
- Kenneth KunenSet Theory32,99 €
-
-
-
Geared toward upper-level undergraduates and graduate students, this treatment examines the basic paradoxes and history of set theory and advanced topics such as relations and functions, equipollence, more. 1960 edition.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Dover Books on Mathema 1.4tics
- Verlag: Dover Publications Inc.
- Seitenzahl: 288
- Erscheinungstermin: 28. März 2003
- Englisch
- Abmessung: 214mm x 137mm x 14mm
- Gewicht: 340g
- ISBN-13: 9780486616308
- ISBN-10: 0486616304
- Artikelnr.: 21773450
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Dover Books on Mathema 1.4tics
- Verlag: Dover Publications Inc.
- Seitenzahl: 288
- Erscheinungstermin: 28. März 2003
- Englisch
- Abmessung: 214mm x 137mm x 14mm
- Gewicht: 340g
- ISBN-13: 9780486616308
- ISBN-10: 0486616304
- Artikelnr.: 21773450
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
1. INTRODUCTION 1.1 Set Theory and the Foundations of Mathematics 1.2 Logic
and Notation 1.3 Axiom Schema of Abstraction and Russell's Paradox 1.4 More
Paradoxes 1.5 Preview of Axioms 2. GENERAL DEVELOPMENTS 2.1 Preliminaries:
Formulas and Definitions 2.2 Axioms of Extensionality and Separation 2.3
"Intersection, Union, and Difference of Sets " 2.4 Pairing Axiom and
Ordered Pairs 2.5 Definition by Abstraction 2.6 Sum Axiom and Families of
Sets 2.7 Power Set Axiom 2.8 Cartesian Product of Sets 2.9 Axiom of
Regularity 2.10 Summary of Axioms 3. RELATIONS AND FUNCTIONS 3.1 Operations
on Binary Relations 3.2 Ordering Relations 3.3 Equivalence Relations and
Partitions 3.4 Functions 4. "EQUIPOLLENCE, FINITE SETS, AND CARDINAL
NUMBERS " 4.1 Equipollence 4.2 Finite Sets 4.3 Cardinal Numbers 4.4 Finite
Cardinals 5. FINITE ORDINALS AND DENUMERABLE SETS 5.1 Definition and
General Properties of Ordinals 5.2 Finite Ordinals and Recursive
Definitions 5.3 Denumerable Sets 6. RATIONAL NUMBERS AND REAL NUMBERS 6.1
Introduction 6.2 Fractions 6.3 Non-negative Rational Numbers 6.4 Rational
Numbers 6.5 Cauchy Sequences of Rational Numbers 6.6 Real Numbers 6.7 Sets
of the Power of the Continuum 7. TRANSFINITE INDUCTION AND ORDINAL
ARITHMETIC 7.1 Transfinite Induction and Definition by Transfinite
Recursion 7.2 Elements of Ordinal Arithmetic 7.3 Cardinal Numbers Again and
Alephs 7.4 Well-Ordered Sets 7.5 Revised Summary of Axioms 8. THE AXIOM OF
CHOICE 8.1 Some Applications of the Axiom of Choice 8.2 Equivalents of the
Axiom of Choice 8.3 Axioms Which Imply the Axiom of Choice 8.4 Independence
of the Axiom of Choice and the Generalized Continuum Hypothesis REFERENCES
GLOSSARY OF SYMBOLS AUTHOR INDEX SUBJECT INDEX
and Notation 1.3 Axiom Schema of Abstraction and Russell's Paradox 1.4 More
Paradoxes 1.5 Preview of Axioms 2. GENERAL DEVELOPMENTS 2.1 Preliminaries:
Formulas and Definitions 2.2 Axioms of Extensionality and Separation 2.3
"Intersection, Union, and Difference of Sets " 2.4 Pairing Axiom and
Ordered Pairs 2.5 Definition by Abstraction 2.6 Sum Axiom and Families of
Sets 2.7 Power Set Axiom 2.8 Cartesian Product of Sets 2.9 Axiom of
Regularity 2.10 Summary of Axioms 3. RELATIONS AND FUNCTIONS 3.1 Operations
on Binary Relations 3.2 Ordering Relations 3.3 Equivalence Relations and
Partitions 3.4 Functions 4. "EQUIPOLLENCE, FINITE SETS, AND CARDINAL
NUMBERS " 4.1 Equipollence 4.2 Finite Sets 4.3 Cardinal Numbers 4.4 Finite
Cardinals 5. FINITE ORDINALS AND DENUMERABLE SETS 5.1 Definition and
General Properties of Ordinals 5.2 Finite Ordinals and Recursive
Definitions 5.3 Denumerable Sets 6. RATIONAL NUMBERS AND REAL NUMBERS 6.1
Introduction 6.2 Fractions 6.3 Non-negative Rational Numbers 6.4 Rational
Numbers 6.5 Cauchy Sequences of Rational Numbers 6.6 Real Numbers 6.7 Sets
of the Power of the Continuum 7. TRANSFINITE INDUCTION AND ORDINAL
ARITHMETIC 7.1 Transfinite Induction and Definition by Transfinite
Recursion 7.2 Elements of Ordinal Arithmetic 7.3 Cardinal Numbers Again and
Alephs 7.4 Well-Ordered Sets 7.5 Revised Summary of Axioms 8. THE AXIOM OF
CHOICE 8.1 Some Applications of the Axiom of Choice 8.2 Equivalents of the
Axiom of Choice 8.3 Axioms Which Imply the Axiom of Choice 8.4 Independence
of the Axiom of Choice and the Generalized Continuum Hypothesis REFERENCES
GLOSSARY OF SYMBOLS AUTHOR INDEX SUBJECT INDEX
1. INTRODUCTION 1.1 Set Theory and the Foundations of Mathematics 1.2 Logic
and Notation 1.3 Axiom Schema of Abstraction and Russell's Paradox 1.4 More
Paradoxes 1.5 Preview of Axioms 2. GENERAL DEVELOPMENTS 2.1 Preliminaries:
Formulas and Definitions 2.2 Axioms of Extensionality and Separation 2.3
"Intersection, Union, and Difference of Sets " 2.4 Pairing Axiom and
Ordered Pairs 2.5 Definition by Abstraction 2.6 Sum Axiom and Families of
Sets 2.7 Power Set Axiom 2.8 Cartesian Product of Sets 2.9 Axiom of
Regularity 2.10 Summary of Axioms 3. RELATIONS AND FUNCTIONS 3.1 Operations
on Binary Relations 3.2 Ordering Relations 3.3 Equivalence Relations and
Partitions 3.4 Functions 4. "EQUIPOLLENCE, FINITE SETS, AND CARDINAL
NUMBERS " 4.1 Equipollence 4.2 Finite Sets 4.3 Cardinal Numbers 4.4 Finite
Cardinals 5. FINITE ORDINALS AND DENUMERABLE SETS 5.1 Definition and
General Properties of Ordinals 5.2 Finite Ordinals and Recursive
Definitions 5.3 Denumerable Sets 6. RATIONAL NUMBERS AND REAL NUMBERS 6.1
Introduction 6.2 Fractions 6.3 Non-negative Rational Numbers 6.4 Rational
Numbers 6.5 Cauchy Sequences of Rational Numbers 6.6 Real Numbers 6.7 Sets
of the Power of the Continuum 7. TRANSFINITE INDUCTION AND ORDINAL
ARITHMETIC 7.1 Transfinite Induction and Definition by Transfinite
Recursion 7.2 Elements of Ordinal Arithmetic 7.3 Cardinal Numbers Again and
Alephs 7.4 Well-Ordered Sets 7.5 Revised Summary of Axioms 8. THE AXIOM OF
CHOICE 8.1 Some Applications of the Axiom of Choice 8.2 Equivalents of the
Axiom of Choice 8.3 Axioms Which Imply the Axiom of Choice 8.4 Independence
of the Axiom of Choice and the Generalized Continuum Hypothesis REFERENCES
GLOSSARY OF SYMBOLS AUTHOR INDEX SUBJECT INDEX
and Notation 1.3 Axiom Schema of Abstraction and Russell's Paradox 1.4 More
Paradoxes 1.5 Preview of Axioms 2. GENERAL DEVELOPMENTS 2.1 Preliminaries:
Formulas and Definitions 2.2 Axioms of Extensionality and Separation 2.3
"Intersection, Union, and Difference of Sets " 2.4 Pairing Axiom and
Ordered Pairs 2.5 Definition by Abstraction 2.6 Sum Axiom and Families of
Sets 2.7 Power Set Axiom 2.8 Cartesian Product of Sets 2.9 Axiom of
Regularity 2.10 Summary of Axioms 3. RELATIONS AND FUNCTIONS 3.1 Operations
on Binary Relations 3.2 Ordering Relations 3.3 Equivalence Relations and
Partitions 3.4 Functions 4. "EQUIPOLLENCE, FINITE SETS, AND CARDINAL
NUMBERS " 4.1 Equipollence 4.2 Finite Sets 4.3 Cardinal Numbers 4.4 Finite
Cardinals 5. FINITE ORDINALS AND DENUMERABLE SETS 5.1 Definition and
General Properties of Ordinals 5.2 Finite Ordinals and Recursive
Definitions 5.3 Denumerable Sets 6. RATIONAL NUMBERS AND REAL NUMBERS 6.1
Introduction 6.2 Fractions 6.3 Non-negative Rational Numbers 6.4 Rational
Numbers 6.5 Cauchy Sequences of Rational Numbers 6.6 Real Numbers 6.7 Sets
of the Power of the Continuum 7. TRANSFINITE INDUCTION AND ORDINAL
ARITHMETIC 7.1 Transfinite Induction and Definition by Transfinite
Recursion 7.2 Elements of Ordinal Arithmetic 7.3 Cardinal Numbers Again and
Alephs 7.4 Well-Ordered Sets 7.5 Revised Summary of Axioms 8. THE AXIOM OF
CHOICE 8.1 Some Applications of the Axiom of Choice 8.2 Equivalents of the
Axiom of Choice 8.3 Axioms Which Imply the Axiom of Choice 8.4 Independence
of the Axiom of Choice and the Generalized Continuum Hypothesis REFERENCES
GLOSSARY OF SYMBOLS AUTHOR INDEX SUBJECT INDEX