Rolf-Peter Holzapfel
Ball and Surface Arithmetics
Ein Angebot für € 56,96 €
Rolf-Peter Holzapfel
Ball and Surface Arithmetics
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
The Riemann-Roch theory is the most important tool for connecting analytic, algebraic and topological properties of manifolds. This monograph concentrates on the complex dimension 2, ie on complex algebraic surfaces. The aim of this book is to introduce a new kind of rational discrete invariants into surface theory and to demonstrate their power for solving current problems.
The Riemann-Roch theory is the most important tool for connecting analytic, algebraic and topological properties of manifolds. This monograph concentrates on the complex dimension 2, ie on complex algebraic surfaces. The aim of this book is to introduce a new kind of rational discrete invariants into surface theory and to demonstrate their power for solving current problems.
Produktdetails
- Produktdetails
- Aspects of Mathematics
- Verlag: Vieweg+Teubner
- Seitenzahl: 250
- Englisch
- Gewicht: 714g
- ISBN-13: 9783528065119
- Artikelnr.: 26667476
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- Aspects of Mathematics
- Verlag: Vieweg+Teubner
- Seitenzahl: 250
- Englisch
- Gewicht: 714g
- ISBN-13: 9783528065119
- Artikelnr.: 26667476
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1 Abelian Points.- 1.1 Cyclic Points.- 1.2 Graphs of Abelian Points.- 1.3 Geometric Interpretation.- 1.4 Derived Representations.- 1.5 The Differential Relation.- 1.6 Stepwise Resolutions of Cyclic Points.- 1.7 Continued Fractions and Selfintersection Numbers.- 1.8 Reciprocity Law for Geometric Sums.- 1.9 Explicit Dedekind Sums.- 1.10 Eisenstein Sums.- 1.11 Hirzebruch's Sum.- 1.12 Geometric Interpretation.- 1.13 Quotients and Coverings of Modifications.- 1.14 Selfintersections of Quotient Curves.- 1.15 The Bridge Algorithm.- 1.16 First Orbital Properties.- 1.17 Local Orbital Euler Numbers.- 1.18 Absorptive Numbers.- 2 Orbital Curves.- 2.1 Point Arrangements on Curves.- 2.2 Euler Heights of Orbital Curves.- 2.3 The Geometric Local-Global Principle.- 2.4 Signature Heights of Orbital Curves.- 3 Orbital Surfaces.- 3.1 Regular Arrangements on Surfaces.- 3.2 Basic Invariants and Fixed Point Theorem.- 3.3 Euler Heights.- 3.4 Signature Heights.- 3.5 Quasi-homogeneous Points, Quotient Points and Cusp Points.- 3.6 Quasi-smooth Orbital Surfaces.- 3.7 Open Orbital Surfaces.- 3.8 Orbital Decompositions.- 4 Ball Quotient Surfaces.- 4.1 Ball Lattices.- 4.2 Neat Ball Cusp Lattices.- 4.3 Invariants of Neat Ball Quotient Surfaces.- 4.4 ?-Rational Discs.- 4.5 Cusp Singularities, Reflections and Elliptic Points.- 4.6 Orbital Ball Quotient Surfaces and Molecular.- 4.7 Invariants of Disc Quotient Curves.- 4.8 Invariants of Ball Quotient Surfaces.- 4.9 Global Proportionality.- 4.10 Orbital Decompositions and the Finiteness Theorem.- 4.11 Leading Examples.- 4.12 Towards the Count of Ball Metrics on Non-Compact Surfaces.- 5 Picard Modular Surfaces.- 5.1 Classification Diagram.- 5.2 Picard Modular Surface of the Field of Eisenstein Numbers.- 5.3 Picard Modular Surface of the Field ofGauss-Numbers.- 5.4 Kodaira Classification of Picard Modular Surfaces.- 5.5 Special Results and Examples.- 5A Volumes of Fundamental Domains of Picard Modular Groups.- 5A.1 The Order of Finite Unitary Groups.- 5A.2 Index of Congruence Subgroups.- 5A.3 Local Volumina.- 5A.4 The Global Volume.- 6 ?-Orbital Surfaces.- 6.1 Introduction.- 6.2 Arrangements with Rational Coefficients.- 6.3 Finite Morphisms of ?-Orbital Surfaces.- 6.4 Functorial Properties for Rational Invariants.- 6.5 Euler and Signature Heights.- 6.6 Reduction of Galois-Finite Morphisms.- 6.7 Local Base Changes.- 6.8 Global Base Changes.- 6.9 Explicit Hurwitz Formulas for Finite Surface Coverings.- 6.10 Finite Coverings of Ruled Surfaces and the Inequality c12 ? 2c2.
1 Abelian Points.- 1.1 Cyclic Points.- 1.2 Graphs of Abelian Points.- 1.3 Geometric Interpretation.- 1.4 Derived Representations.- 1.5 The Differential Relation.- 1.6 Stepwise Resolutions of Cyclic Points.- 1.7 Continued Fractions and Selfintersection Numbers.- 1.8 Reciprocity Law for Geometric Sums.- 1.9 Explicit Dedekind Sums.- 1.10 Eisenstein Sums.- 1.11 Hirzebruch's Sum.- 1.12 Geometric Interpretation.- 1.13 Quotients and Coverings of Modifications.- 1.14 Selfintersections of Quotient Curves.- 1.15 The Bridge Algorithm.- 1.16 First Orbital Properties.- 1.17 Local Orbital Euler Numbers.- 1.18 Absorptive Numbers.- 2 Orbital Curves.- 2.1 Point Arrangements on Curves.- 2.2 Euler Heights of Orbital Curves.- 2.3 The Geometric Local-Global Principle.- 2.4 Signature Heights of Orbital Curves.- 3 Orbital Surfaces.- 3.1 Regular Arrangements on Surfaces.- 3.2 Basic Invariants and Fixed Point Theorem.- 3.3 Euler Heights.- 3.4 Signature Heights.- 3.5 Quasi-homogeneous Points, Quotient Points and Cusp Points.- 3.6 Quasi-smooth Orbital Surfaces.- 3.7 Open Orbital Surfaces.- 3.8 Orbital Decompositions.- 4 Ball Quotient Surfaces.- 4.1 Ball Lattices.- 4.2 Neat Ball Cusp Lattices.- 4.3 Invariants of Neat Ball Quotient Surfaces.- 4.4 ?-Rational Discs.- 4.5 Cusp Singularities, Reflections and Elliptic Points.- 4.6 Orbital Ball Quotient Surfaces and Molecular.- 4.7 Invariants of Disc Quotient Curves.- 4.8 Invariants of Ball Quotient Surfaces.- 4.9 Global Proportionality.- 4.10 Orbital Decompositions and the Finiteness Theorem.- 4.11 Leading Examples.- 4.12 Towards the Count of Ball Metrics on Non-Compact Surfaces.- 5 Picard Modular Surfaces.- 5.1 Classification Diagram.- 5.2 Picard Modular Surface of the Field of Eisenstein Numbers.- 5.3 Picard Modular Surface of the Field ofGauss-Numbers.- 5.4 Kodaira Classification of Picard Modular Surfaces.- 5.5 Special Results and Examples.- 5A Volumes of Fundamental Domains of Picard Modular Groups.- 5A.1 The Order of Finite Unitary Groups.- 5A.2 Index of Congruence Subgroups.- 5A.3 Local Volumina.- 5A.4 The Global Volume.- 6 ?-Orbital Surfaces.- 6.1 Introduction.- 6.2 Arrangements with Rational Coefficients.- 6.3 Finite Morphisms of ?-Orbital Surfaces.- 6.4 Functorial Properties for Rational Invariants.- 6.5 Euler and Signature Heights.- 6.6 Reduction of Galois-Finite Morphisms.- 6.7 Local Base Changes.- 6.8 Global Base Changes.- 6.9 Explicit Hurwitz Formulas for Finite Surface Coverings.- 6.10 Finite Coverings of Ruled Surfaces and the Inequality c12 ? 2c2.