Small sealed electrochemical power units have developed remarkably in the last two decades owing to improvements in technology and a greater understanding of the underlying basic sciences. These high-energy-density sealed battery sys tems have made possible the safe and rapid development of lightweight implant able electrical devices, some of which, such as heart pacers, have reached a large market. In most of these devices the battery constitutes the majority of the device volume and weight, and limits the useful life. This book on Batteries for Implantable Biomedical Devices will be highly…mehr
Small sealed electrochemical power units have developed remarkably in the last two decades owing to improvements in technology and a greater understanding of the underlying basic sciences. These high-energy-density sealed battery sys tems have made possible the safe and rapid development of lightweight implant able electrical devices, some of which, such as heart pacers, have reached a large market. In most of these devices the battery constitutes the majority of the device volume and weight, and limits the useful life. This book on Batteries for Implantable Biomedical Devices will be highly welcome to those interested in devices for heart pacing, pain suppression, bone repair, bone fusion, heart assist, and diabetes control, as well as numerous other biomedical devices that depend on sealed batteries. However, the material will also be extremely useful to a much broader audience, including those concerned with sealed batteries for such other difficult environments as space, the sea and remote locations.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
1. Electrically Driven Implantable Prostheses.- 1. General Background.- 2. Devices Background.- 3. Business Aspects.- 4. Future Directions.- References.- 2. Key Events in the Evolution of Implantable Pacemaker Batteries.- 1. Introduction.- 2. An Interview with Samuel Ruben.- 3. An Interview with Wilson Greatbatch.- References.- 3. Lithium Primary Cells for Power Sources.- 1. Introduction.- 2. The Elements of a Battery.- 3. Battery Parameters.- 4. Battery Performance.- 5. Microcalorimetry.- 6. Implantable Battery Chemistries.- References.- 4. Evaluation Methods.- 1. Evaluation Objectives.- 2. Accelerated Testing.- 3. Nonaccelerated Testing.- 4. Qualification Protocol.- 5. Data Analysis.- References.- 5. Battery Performance Modeling.- 1. Description of the Problem.- 2. Importance of the Solution.- 3. Description of the Variables and Relationships.- 4. Classification of Models.- 5. Statistical Methods.- 6. Modeling of the Lithium/Iodine Pacemaker Battery.- 7. Device Longevity.- 8. Conclusion.- References.- 6. Lithium/Halogen Batteries.- 1. Introduction.- 2. General Features of Lithium/Halogen Solid Electrolyte Batteries.- 3. The Lithium/Bromine System.- 4. Chemistry of the Lithium/Iodine-Poly vinylpyridine System.- 5. Construction of Lithium/Iodine-PVP Cells.- 6. Discharge Characteristics of the Li/I2-PVP Battery.- 7. Performance of the Li/I2-PVP Cell.- 8. Summary and Conclusion.- References.- 7. Lithium Solid Cathode Batteries for Biomedical Implantable Applications.- 1. Introduction.- 2. General Features of Lithium Solid Cathode Systems.- 3. Specific Systems Used for Biomedical Applications.- 4. Use of Lithium Solid Cathode Systems in Implanted Medical Devices.- 5. Summary and Conclusions.- References.- 8. Lithium-Liquid Oxidant Batteries.- 1. Introduction.- 2. Description of the System.- 3. Capacity and Energy Density.- 4. State-of-Discharge Indication.- 5. Voltage Delay.- 6. Safety.- References.- 9. Mercury Batteries for Pacemakers and Other Implantable Devices.- 1. Background.- 2. Chemistry.- 3. Cell Design and Performance Characteristics.- References.- 10. Rechargeable Electrochemical Cells as Implantable Power Sources.- 1. Introduction.- 2. Nickel Oxide/Cadmium Cells.- 3. Rechargeable Mercuric Oxide/Zinc Cells.- 4. Prospects for Future Use of Rechargeable Cells.- References.- 11. Nuclear Batteries for Implantable Applications.- 1. General Description of Nuclear Batteries.- 2. Isotope Selection.- 3. Detailed Characteristics of the Plutonium-238 Isotope.- 4. Thermoelectric Generator Systems.- 5. Thermopile Design.- 6. Insulation Design and Selection.- 7. Fuel Capsule Design.- 8. Thermal Analysis.- 9. Electrical Characteristics.- 10. Radiation Effects.- 11. Licensing Requirements.- 12. Applications of Nuclear Batteries.- 13. Nuclear Battery Reliability.- References.
1. Electrically Driven Implantable Prostheses.- 1. General Background.- 2. Devices Background.- 3. Business Aspects.- 4. Future Directions.- References.- 2. Key Events in the Evolution of Implantable Pacemaker Batteries.- 1. Introduction.- 2. An Interview with Samuel Ruben.- 3. An Interview with Wilson Greatbatch.- References.- 3. Lithium Primary Cells for Power Sources.- 1. Introduction.- 2. The Elements of a Battery.- 3. Battery Parameters.- 4. Battery Performance.- 5. Microcalorimetry.- 6. Implantable Battery Chemistries.- References.- 4. Evaluation Methods.- 1. Evaluation Objectives.- 2. Accelerated Testing.- 3. Nonaccelerated Testing.- 4. Qualification Protocol.- 5. Data Analysis.- References.- 5. Battery Performance Modeling.- 1. Description of the Problem.- 2. Importance of the Solution.- 3. Description of the Variables and Relationships.- 4. Classification of Models.- 5. Statistical Methods.- 6. Modeling of the Lithium/Iodine Pacemaker Battery.- 7. Device Longevity.- 8. Conclusion.- References.- 6. Lithium/Halogen Batteries.- 1. Introduction.- 2. General Features of Lithium/Halogen Solid Electrolyte Batteries.- 3. The Lithium/Bromine System.- 4. Chemistry of the Lithium/Iodine-Poly vinylpyridine System.- 5. Construction of Lithium/Iodine-PVP Cells.- 6. Discharge Characteristics of the Li/I2-PVP Battery.- 7. Performance of the Li/I2-PVP Cell.- 8. Summary and Conclusion.- References.- 7. Lithium Solid Cathode Batteries for Biomedical Implantable Applications.- 1. Introduction.- 2. General Features of Lithium Solid Cathode Systems.- 3. Specific Systems Used for Biomedical Applications.- 4. Use of Lithium Solid Cathode Systems in Implanted Medical Devices.- 5. Summary and Conclusions.- References.- 8. Lithium-Liquid Oxidant Batteries.- 1. Introduction.- 2. Description of the System.- 3. Capacity and Energy Density.- 4. State-of-Discharge Indication.- 5. Voltage Delay.- 6. Safety.- References.- 9. Mercury Batteries for Pacemakers and Other Implantable Devices.- 1. Background.- 2. Chemistry.- 3. Cell Design and Performance Characteristics.- References.- 10. Rechargeable Electrochemical Cells as Implantable Power Sources.- 1. Introduction.- 2. Nickel Oxide/Cadmium Cells.- 3. Rechargeable Mercuric Oxide/Zinc Cells.- 4. Prospects for Future Use of Rechargeable Cells.- References.- 11. Nuclear Batteries for Implantable Applications.- 1. General Description of Nuclear Batteries.- 2. Isotope Selection.- 3. Detailed Characteristics of the Plutonium-238 Isotope.- 4. Thermoelectric Generator Systems.- 5. Thermopile Design.- 6. Insulation Design and Selection.- 7. Fuel Capsule Design.- 8. Thermal Analysis.- 9. Electrical Characteristics.- 10. Radiation Effects.- 11. Licensing Requirements.- 12. Applications of Nuclear Batteries.- 13. Nuclear Battery Reliability.- References.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826