Bayesian Inference for Gene Expression and Proteomics
Herausgeber: Do, Kim-Anh; Vannucci, Marina; Müller, Peter
Bayesian Inference for Gene Expression and Proteomics
Herausgeber: Do, Kim-Anh; Vannucci, Marina; Müller, Peter
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Expert overviews of Bayesian methodology, tools and software for multi-platform high-throughput experimentation.
Andere Kunden interessierten sich auch für
- Marina VannucciBayesian Inference for Gene Expression and Proteomics85,99 €
- Leonhard HeldLikelihood and Bayesian Inference42,99 €
- New Developments in Statistical Modeling, Inference and Application110,99 €
- Statistical Analysis of Proteomics, Metabolomics, and Lipidomics Data Using Mass Spectrometry125,99 €
- Research in Medical and Biological Sciences72,99 €
- David CullifordApplied Statistical Considerations for Clinical Researchers45,99 €
- Bayesian Methods in Structural Bioinformatics74,99 €
-
-
-
Expert overviews of Bayesian methodology, tools and software for multi-platform high-throughput experimentation.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 468
- Erscheinungstermin: 5. Juli 2012
- Englisch
- Abmessung: 229mm x 152mm x 25mm
- Gewicht: 672g
- ISBN-13: 9781107636989
- ISBN-10: 1107636981
- Artikelnr.: 35897179
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Verlag: Cambridge University Press
- Seitenzahl: 468
- Erscheinungstermin: 5. Juli 2012
- Englisch
- Abmessung: 229mm x 152mm x 25mm
- Gewicht: 672g
- ISBN-13: 9781107636989
- ISBN-10: 1107636981
- Artikelnr.: 35897179
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
1. An introduction to high-throughput bioinformatics data Keith Baggerly,
Kevin Coombes and Jeffrey S. Morris; 2. Hierarchical mixture models for
expression profiles Michael Newton, Ping Wang and Christina Kendziorski; 3.
Bayesian hierarchical models for inference in microarray data Anne-Mette K.
Hein, Alex Lewin and Sylvia Richardson; 4. Bayesian process-based modeling
of two-channel microarray experiments estimating absolute mRNA
concentrations Mark A. van de Wiel, Marit Holden, Ingrid K. Glad, Heidi
Lyng and Arnoldo Frigessi; 5. Identification of biomarkers in
classification and clustering of high-throughput data Mahlet Tadesse,
Marina Vannucci, Naijun Sha and Sinae Kim; 6. Modeling nonlinear gene
interactions using Bayesian MARS Veerabhadran Baladandayuthapani, Chris C.
Holmes, Bani K. Mallick and Raymond J. Carroll; 7. Models for probability
of under- and over-expression: the POE scale Elizabeth Garrett-Mayer and
Robert Scharpf; 8. Sparse statistical modelling in gene expression genomics
Joseph Lucas, Carlos Carvalho, Quanli Wang, Andrea Bild, Joseph Nevins and
Mike West; 9. Bayesian analysis of cell-cycle gene expression Chuan Zhou,
Jon Wakefield and Linda L. Breeden; 10. Model-based clustering for
expression data via a Dirichlet process mixture model David Dahl; 11.
Interval mapping for Expression Quantitative Trait Loci mapping Meng Chen
and Christina Kendziorski; 12. Bayesian mixture model for gene expression
and protein profiles Michele Guindani, Kim-Anh Do, Peter Müller and Jeffrey
S. Morris; 13. Shrinkage estimation for SAGE data using a mixture Dirichlet
prior Jeffrey S. Morris, Kevin Coombes and Keith Baggerly; 14. Analysis of
mass spectrometry data using Bayesian wavelet-based functional mixed models
Jeffrey S. Morris, Philip J. Brown, Keith Baggerly and Kevin Coombes; 15.
Nonparametric models for proteomic peak identification and quantification
Merlise Clyde, Leanna House and Robert Wolpert; 16. Bayesian modeling and
inference for sequence motif discovery Mayetri Gupta and Jun S. Liu; 17.
Identifying of DNA regulatory motifs and regulators by integrating gene
expression and sequence data Deuk Woo Kwon, Sinae Kim, David Dahl, Michael
Swartz, Mahlet Tadesse and Marina Vannucci; 18. A misclassification model
for inferring transcriptional regulatory networks Ning Sun and Hongyu Zhao;
19. Estimating cellular signaling from transcription data Andrew V.
Kossenkov, Ghislain Bidaut and Michael Ochs; 20. Computational methods for
learning Bayesian networks from high-throughput biological data Bradley
Broom and Devika Subramanian; 21. Modeling transcriptional regulation:
Bayesian networks and informative priors Alexander J. Hartemink; 22. Sample
size choice for microarray experiments Peter Müller, Christian Robert and
Judith Rousseau.
Kevin Coombes and Jeffrey S. Morris; 2. Hierarchical mixture models for
expression profiles Michael Newton, Ping Wang and Christina Kendziorski; 3.
Bayesian hierarchical models for inference in microarray data Anne-Mette K.
Hein, Alex Lewin and Sylvia Richardson; 4. Bayesian process-based modeling
of two-channel microarray experiments estimating absolute mRNA
concentrations Mark A. van de Wiel, Marit Holden, Ingrid K. Glad, Heidi
Lyng and Arnoldo Frigessi; 5. Identification of biomarkers in
classification and clustering of high-throughput data Mahlet Tadesse,
Marina Vannucci, Naijun Sha and Sinae Kim; 6. Modeling nonlinear gene
interactions using Bayesian MARS Veerabhadran Baladandayuthapani, Chris C.
Holmes, Bani K. Mallick and Raymond J. Carroll; 7. Models for probability
of under- and over-expression: the POE scale Elizabeth Garrett-Mayer and
Robert Scharpf; 8. Sparse statistical modelling in gene expression genomics
Joseph Lucas, Carlos Carvalho, Quanli Wang, Andrea Bild, Joseph Nevins and
Mike West; 9. Bayesian analysis of cell-cycle gene expression Chuan Zhou,
Jon Wakefield and Linda L. Breeden; 10. Model-based clustering for
expression data via a Dirichlet process mixture model David Dahl; 11.
Interval mapping for Expression Quantitative Trait Loci mapping Meng Chen
and Christina Kendziorski; 12. Bayesian mixture model for gene expression
and protein profiles Michele Guindani, Kim-Anh Do, Peter Müller and Jeffrey
S. Morris; 13. Shrinkage estimation for SAGE data using a mixture Dirichlet
prior Jeffrey S. Morris, Kevin Coombes and Keith Baggerly; 14. Analysis of
mass spectrometry data using Bayesian wavelet-based functional mixed models
Jeffrey S. Morris, Philip J. Brown, Keith Baggerly and Kevin Coombes; 15.
Nonparametric models for proteomic peak identification and quantification
Merlise Clyde, Leanna House and Robert Wolpert; 16. Bayesian modeling and
inference for sequence motif discovery Mayetri Gupta and Jun S. Liu; 17.
Identifying of DNA regulatory motifs and regulators by integrating gene
expression and sequence data Deuk Woo Kwon, Sinae Kim, David Dahl, Michael
Swartz, Mahlet Tadesse and Marina Vannucci; 18. A misclassification model
for inferring transcriptional regulatory networks Ning Sun and Hongyu Zhao;
19. Estimating cellular signaling from transcription data Andrew V.
Kossenkov, Ghislain Bidaut and Michael Ochs; 20. Computational methods for
learning Bayesian networks from high-throughput biological data Bradley
Broom and Devika Subramanian; 21. Modeling transcriptional regulation:
Bayesian networks and informative priors Alexander J. Hartemink; 22. Sample
size choice for microarray experiments Peter Müller, Christian Robert and
Judith Rousseau.
1. An introduction to high-throughput bioinformatics data Keith Baggerly,
Kevin Coombes and Jeffrey S. Morris; 2. Hierarchical mixture models for
expression profiles Michael Newton, Ping Wang and Christina Kendziorski; 3.
Bayesian hierarchical models for inference in microarray data Anne-Mette K.
Hein, Alex Lewin and Sylvia Richardson; 4. Bayesian process-based modeling
of two-channel microarray experiments estimating absolute mRNA
concentrations Mark A. van de Wiel, Marit Holden, Ingrid K. Glad, Heidi
Lyng and Arnoldo Frigessi; 5. Identification of biomarkers in
classification and clustering of high-throughput data Mahlet Tadesse,
Marina Vannucci, Naijun Sha and Sinae Kim; 6. Modeling nonlinear gene
interactions using Bayesian MARS Veerabhadran Baladandayuthapani, Chris C.
Holmes, Bani K. Mallick and Raymond J. Carroll; 7. Models for probability
of under- and over-expression: the POE scale Elizabeth Garrett-Mayer and
Robert Scharpf; 8. Sparse statistical modelling in gene expression genomics
Joseph Lucas, Carlos Carvalho, Quanli Wang, Andrea Bild, Joseph Nevins and
Mike West; 9. Bayesian analysis of cell-cycle gene expression Chuan Zhou,
Jon Wakefield and Linda L. Breeden; 10. Model-based clustering for
expression data via a Dirichlet process mixture model David Dahl; 11.
Interval mapping for Expression Quantitative Trait Loci mapping Meng Chen
and Christina Kendziorski; 12. Bayesian mixture model for gene expression
and protein profiles Michele Guindani, Kim-Anh Do, Peter Müller and Jeffrey
S. Morris; 13. Shrinkage estimation for SAGE data using a mixture Dirichlet
prior Jeffrey S. Morris, Kevin Coombes and Keith Baggerly; 14. Analysis of
mass spectrometry data using Bayesian wavelet-based functional mixed models
Jeffrey S. Morris, Philip J. Brown, Keith Baggerly and Kevin Coombes; 15.
Nonparametric models for proteomic peak identification and quantification
Merlise Clyde, Leanna House and Robert Wolpert; 16. Bayesian modeling and
inference for sequence motif discovery Mayetri Gupta and Jun S. Liu; 17.
Identifying of DNA regulatory motifs and regulators by integrating gene
expression and sequence data Deuk Woo Kwon, Sinae Kim, David Dahl, Michael
Swartz, Mahlet Tadesse and Marina Vannucci; 18. A misclassification model
for inferring transcriptional regulatory networks Ning Sun and Hongyu Zhao;
19. Estimating cellular signaling from transcription data Andrew V.
Kossenkov, Ghislain Bidaut and Michael Ochs; 20. Computational methods for
learning Bayesian networks from high-throughput biological data Bradley
Broom and Devika Subramanian; 21. Modeling transcriptional regulation:
Bayesian networks and informative priors Alexander J. Hartemink; 22. Sample
size choice for microarray experiments Peter Müller, Christian Robert and
Judith Rousseau.
Kevin Coombes and Jeffrey S. Morris; 2. Hierarchical mixture models for
expression profiles Michael Newton, Ping Wang and Christina Kendziorski; 3.
Bayesian hierarchical models for inference in microarray data Anne-Mette K.
Hein, Alex Lewin and Sylvia Richardson; 4. Bayesian process-based modeling
of two-channel microarray experiments estimating absolute mRNA
concentrations Mark A. van de Wiel, Marit Holden, Ingrid K. Glad, Heidi
Lyng and Arnoldo Frigessi; 5. Identification of biomarkers in
classification and clustering of high-throughput data Mahlet Tadesse,
Marina Vannucci, Naijun Sha and Sinae Kim; 6. Modeling nonlinear gene
interactions using Bayesian MARS Veerabhadran Baladandayuthapani, Chris C.
Holmes, Bani K. Mallick and Raymond J. Carroll; 7. Models for probability
of under- and over-expression: the POE scale Elizabeth Garrett-Mayer and
Robert Scharpf; 8. Sparse statistical modelling in gene expression genomics
Joseph Lucas, Carlos Carvalho, Quanli Wang, Andrea Bild, Joseph Nevins and
Mike West; 9. Bayesian analysis of cell-cycle gene expression Chuan Zhou,
Jon Wakefield and Linda L. Breeden; 10. Model-based clustering for
expression data via a Dirichlet process mixture model David Dahl; 11.
Interval mapping for Expression Quantitative Trait Loci mapping Meng Chen
and Christina Kendziorski; 12. Bayesian mixture model for gene expression
and protein profiles Michele Guindani, Kim-Anh Do, Peter Müller and Jeffrey
S. Morris; 13. Shrinkage estimation for SAGE data using a mixture Dirichlet
prior Jeffrey S. Morris, Kevin Coombes and Keith Baggerly; 14. Analysis of
mass spectrometry data using Bayesian wavelet-based functional mixed models
Jeffrey S. Morris, Philip J. Brown, Keith Baggerly and Kevin Coombes; 15.
Nonparametric models for proteomic peak identification and quantification
Merlise Clyde, Leanna House and Robert Wolpert; 16. Bayesian modeling and
inference for sequence motif discovery Mayetri Gupta and Jun S. Liu; 17.
Identifying of DNA regulatory motifs and regulators by integrating gene
expression and sequence data Deuk Woo Kwon, Sinae Kim, David Dahl, Michael
Swartz, Mahlet Tadesse and Marina Vannucci; 18. A misclassification model
for inferring transcriptional regulatory networks Ning Sun and Hongyu Zhao;
19. Estimating cellular signaling from transcription data Andrew V.
Kossenkov, Ghislain Bidaut and Michael Ochs; 20. Computational methods for
learning Bayesian networks from high-throughput biological data Bradley
Broom and Devika Subramanian; 21. Modeling transcriptional regulation:
Bayesian networks and informative priors Alexander J. Hartemink; 22. Sample
size choice for microarray experiments Peter Müller, Christian Robert and
Judith Rousseau.