This volume provides a thorough introduction and reference for any researcher who is interested in Bayesian inference for wavelet-based models, but is not necessarily an expert in either. To achieve this goal the book starts with an extensive introductory chapter providing a self-contained introduction to the use of wavelet decompositions and the relation to Bayesian inference. The remaining papers in this volume are divided into six parts: independent prior modeling; decision theoretic aspects; dependent prior modeling; spatial models using bivariate wavelet bases; empirical Bayes approaches;…mehr
This volume provides a thorough introduction and reference for any researcher who is interested in Bayesian inference for wavelet-based models, but is not necessarily an expert in either. To achieve this goal the book starts with an extensive introductory chapter providing a self-contained introduction to the use of wavelet decompositions and the relation to Bayesian inference. The remaining papers in this volume are divided into six parts: independent prior modeling; decision theoretic aspects; dependent prior modeling; spatial models using bivariate wavelet bases; empirical Bayes approaches; and case studies. Chapters are written by experts who published the original research papers establishing the use of wavelet-based models in Bayesian inference. Peter Müller is Associate Professor and Brani Vidakovic is Assistant Professor of Statistics at Duke University.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
I Introduction.- 1 An Introduction to Wavelets.- 2 Spectral View of Wavelets and Nonlinear Regression.- II Prior Models - Independent Case.- 3 Bayesian Approach to Wavelet Decomposition and Shrinkage.- 4 Some Observations on the Iractability of Certain Multi-Scale Models..- 5 Bayesian Analysis of Change-Point Models.- 6 Prior Elicitation in the Wavelet Domain.- 7 Wavelet Nonparametric Regression Using Basis Averaging.- III Decision Theoretic Wavelet Shrinkage.- 8 An Overview of Wavelet Regularization.- 9 Minimax Restoration and Deconvolution.- 10 Robust Bayesian and Bayesian Decision Theoretic Wavelet Shrinkage.- 11 Best Basis Representations with Prior Statistical Models.- IV Prior Models Dependent Case.- 12 Modeling Dependence in the Wavelet Domain.- 13 MCMC Methods in Wavelet Shrinkage.- V Spatial Models.- 14 Empirical Bayesian Spatial Prediction Using Wavelets.- 15 Geometrical Priors for Noisefree Wavelet Coefficients in Image Denoising.- 16 Multiscale Hidden Markov Models for Bayesian Image Analysis.- 17 Wavelets for Object Representation and Recognition in Computer Vision.- 18 Bayesian Denoising of Visual Images in the Wavelet Domain.- VI Empirical Bayes.- 19 Empirical Bayes Estimation in Wavelet Nonparametric Regression.- 20 Nonparametric Empirical Bayes Estimation via Wavelets.- VII Case Studies.- 21 Multiresolution Wavelet Analyses in Hierarchical Bayesian Turbulence Models.- 22 Low Dimensional Turbulent Transport Mechanics Near the Forest-Atmosphere Interface.- 23 Latent Structure Analyses of Turbulence Data Using Wavelets and Time Series Decompositions.
I Introduction.- 1 An Introduction to Wavelets.- 2 Spectral View of Wavelets and Nonlinear Regression.- II Prior Models - Independent Case.- 3 Bayesian Approach to Wavelet Decomposition and Shrinkage.- 4 Some Observations on the Iractability of Certain Multi-Scale Models..- 5 Bayesian Analysis of Change-Point Models.- 6 Prior Elicitation in the Wavelet Domain.- 7 Wavelet Nonparametric Regression Using Basis Averaging.- III Decision Theoretic Wavelet Shrinkage.- 8 An Overview of Wavelet Regularization.- 9 Minimax Restoration and Deconvolution.- 10 Robust Bayesian and Bayesian Decision Theoretic Wavelet Shrinkage.- 11 Best Basis Representations with Prior Statistical Models.- IV Prior Models Dependent Case.- 12 Modeling Dependence in the Wavelet Domain.- 13 MCMC Methods in Wavelet Shrinkage.- V Spatial Models.- 14 Empirical Bayesian Spatial Prediction Using Wavelets.- 15 Geometrical Priors for Noisefree Wavelet Coefficients in Image Denoising.- 16 Multiscale Hidden Markov Models for Bayesian Image Analysis.- 17 Wavelets for Object Representation and Recognition in Computer Vision.- 18 Bayesian Denoising of Visual Images in the Wavelet Domain.- VI Empirical Bayes.- 19 Empirical Bayes Estimation in Wavelet Nonparametric Regression.- 20 Nonparametric Empirical Bayes Estimation via Wavelets.- VII Case Studies.- 21 Multiresolution Wavelet Analyses in Hierarchical Bayesian Turbulence Models.- 22 Low Dimensional Turbulent Transport Mechanics Near the Forest-Atmosphere Interface.- 23 Latent Structure Analyses of Turbulence Data Using Wavelets and Time Series Decompositions.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826