112,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
56 °P sammeln
  • Gebundenes Buch

This book addresses the applications of extensively used regression models under a Bayesian framework. It emphasizes efficient Bayesian inference through integrated nested Laplace approximations (INLA) and real data analysis using R. The INLA method directly computes very accurate approximations to the posterior marginal distributions and is a promising alternative to Markov chain Monte Carlo (MCMC) algorithms, which come with a range of issues that impede practical use of Bayesian models.

Produktbeschreibung
This book addresses the applications of extensively used regression models under a Bayesian framework. It emphasizes efficient Bayesian inference through integrated nested Laplace approximations (INLA) and real data analysis using R. The INLA method directly computes very accurate approximations to the posterior marginal distributions and is a promising alternative to Markov chain Monte Carlo (MCMC) algorithms, which come with a range of issues that impede practical use of Bayesian models.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Xiaofeng Wang is Professor of Medicine and Biostatistics at the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University and a Full Staff in the Department of Quantitative Health Sciences at Cleveland Clinic. Yu Ryan Yue is Associate Professor of Statistics in the Paul H. Chook Department of Information Systems and Statistics at Baruch College, The City University of New York. Julian J. Faraway is Professor of Statistics in the Department of Mathematical Sciences at the University of Bath.