Bayesian Theory and Applications
Herausgeber: Damien, Paul; Polson, Nicholas G; Dellaportas, Petros
Bayesian Theory and Applications
Herausgeber: Damien, Paul; Polson, Nicholas G; Dellaportas, Petros
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
The development of hierarchical models and Markov chain Monte Carlo (MCMC) techniques forms one of the most profound advances in Bayesian analysis since the 1970s and provides the basis for advances in virtually all areas of applied and theoretical Bayesian statistics.
Andere Kunden interessierten sich auch für
- John ThompsonBayesian Analysis with Stata90,99 €
- SyskiRandom Processes29,99 €
- FlorensElements of Bayesian Statistics94,99 €
- Peter HollinsMental Models23,99 €
- Darren J. WilkinsonStochastic Modelling for Systems Biology, Third Edition76,99 €
- Origins PublicationsPractice Test for the COGAT Grade 5 Level 11: CogAT Test Prep Grade 5: Cognitive Abilities Test Form 7 and 8 for 5th Grade23,99 €
- Arnold ZellnerAn Introduction to Bayesian Inference in Econometrics200,99 €
-
-
-
The development of hierarchical models and Markov chain Monte Carlo (MCMC) techniques forms one of the most profound advances in Bayesian analysis since the 1970s and provides the basis for advances in virtually all areas of applied and theoretical Bayesian statistics.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: OUP Oxford
- Seitenzahl: 718
- Erscheinungstermin: 26. Februar 2015
- Englisch
- Abmessung: 234mm x 156mm x 38mm
- Gewicht: 1071g
- ISBN-13: 9780198739074
- ISBN-10: 0198739079
- Artikelnr.: 47870624
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Verlag: OUP Oxford
- Seitenzahl: 718
- Erscheinungstermin: 26. Februar 2015
- Englisch
- Abmessung: 234mm x 156mm x 38mm
- Gewicht: 1071g
- ISBN-13: 9780198739074
- ISBN-10: 0198739079
- Artikelnr.: 47870624
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
Paul Damien is a Professor at the McCombs School of Business, University of Texas in Austin. Petros Dellaportas is a Professor at the Athens University of Economics and Business. Nicholas G Polson is Professor of Econometrics and Statistics at Chicago Booth, University of Chicago. David M Stephens is a Professor in the Department of Mathematics and Statistics at McGill University, Canada.
* Introduction
* I EXCHANGEABILITY
* 1: Michael Goldstein: Observables and Models: exchangeability and the
inductive argument
* 2: A. Philip Dawid: Exchangeability and its Ramifications
* II HIERARCHICAL MODELS
* 3: Alan E. Gelfand and Souparno Ghosh: Hierarchical Modeling
* 4: Sounak Chakraborty, Bani K Mallick and Malay Ghosh: Bayesian
Hierarchical Kernel Machines for Nonlinear Regression and
Classification
* 5: Athanasios Kottas and Kassandra Fronczyk: Flexible Bayesian
modelling for clustered categorical responses in developmental
toxicology
* III MARKOV CHAIN MONTE CARLO
* 6: Siddartha Chib: Markov chain Monte Carlo Methods
* 7: Jim E. Griffin and David A. Stephens: Advances in Markov chain
Monte Carlo
* IV DYNAMIC MODELS
* 8: Mike West: Bayesian Dynamic Modelling
* 9: Dani Gamerman and Esther Salazar: Hierarchical modeling in time
series: the factor analytic approach
* 10: Gabriel Huerta and Glenn A. Stark: Dynamic and spatial modeling
of block maxima extremes
* V SEQUENTIAL MONTE CARLO
* 11: Hedibert F. Lopes and Carlos M. Carvalho: Online Bayesian
learning in dynamic models: An illustrative introduction to particle
methods
* 12: Ana Paula Sales, Christopher Challis, Ryan Prenger, and Daniel
Merl: Semi-supervised Classification of Texts Using Particle Learning
for Probabilistic Automata
* VI NONPARAMETRICS
* 13: Stephen G Walker: Bayesian Nonparametrics
* 14: Ramsés H. Mena: Geometric Weight Priors and their Applications
* 15: Stephen G. Walker and George Karabatsos: Revisiting Bayesian
Curve Fitting Using Multivariate Normal Mixtures
* VII SPLINE MODELS AND COPULAS
* 16: Sally Wood: Applications of Bayesian Smoothing Splines
* 17: Michael Stanley Smith: Bayesian Approaches to Copula Modelling
* VIII MODEL ELABORATION AND PRIOR DISTRIBUTIONS
* 18: M.J. Bayarri and J.O. Berger: Hypothesis Testing and Model
Uncertainty
* 19: E. Gutiérrez-Peña and M. Mendoza: Proper and non-informative
conjugate priors for exponential family models
* 20: David Draper: Bayesian Model Specification: Heuristics and
Examples
* 21: Zesong Liu, Jesse Windle, and James G. Scott: Case studies in
Bayesian screening for time-varying model structure: The partition
problem
* IX REGRESSIONS AND MODEL AVERAGING
* 22: Hugh A. Chipman, Edward I. George and Robert E. McCulloch:
Bayesian Regression Structure Discovery
* 23: Robert B. Gramacy: Gibbs sampling for ordinary, robust and
logistic regression with Laplace priors
* 24: Merlise Clyde and Edwin S. Iversen: Bayesian Model Averaging in
the M-Open Framework
* X FINANCE AND ACTUARIAL SCIENCE
* 25: Eric Jacquier and Nicholas G Polson: Asset Allocation in Finance:
A Bayesian Perspective
* 26: Arthur Korteweg: Markov Chain Monte Carlo Methods in Corporate
Finance
* 27: Udi Makov: Actuarial Credibity Theory and Bayesian Statistics -
The Story of a Special Evolution
* XI MEDICINE AND BIOSTATISTICS
* 28: Peter Müller: Bayesian Models in Biostatistics and Medicine
* 29: Purushottam W. Laud, Siva Sivaganesan and Peter Müller: Subgroup
Analysis
* 30: Timothy E. Hanson and Alejandro Jara: Surviving Fully Bayesian
Nonparametric Regression Models
* XII INVERSE PROBLEMS AND APPLICATIONS
* 31: Colin Fox, Heikki Haario and J. Andrés Christen: Inverse Problems
* 32: Jari Kaipio and Ville Kolehmainen: Approximate marginalization
over modeling errors and uncertainties in inverse problems
* 33: C. Nakhleh, D. Higdon, C. K. Allen and R. Ryne: Bayesian
reconstruction of particle beam phase space
* I EXCHANGEABILITY
* 1: Michael Goldstein: Observables and Models: exchangeability and the
inductive argument
* 2: A. Philip Dawid: Exchangeability and its Ramifications
* II HIERARCHICAL MODELS
* 3: Alan E. Gelfand and Souparno Ghosh: Hierarchical Modeling
* 4: Sounak Chakraborty, Bani K Mallick and Malay Ghosh: Bayesian
Hierarchical Kernel Machines for Nonlinear Regression and
Classification
* 5: Athanasios Kottas and Kassandra Fronczyk: Flexible Bayesian
modelling for clustered categorical responses in developmental
toxicology
* III MARKOV CHAIN MONTE CARLO
* 6: Siddartha Chib: Markov chain Monte Carlo Methods
* 7: Jim E. Griffin and David A. Stephens: Advances in Markov chain
Monte Carlo
* IV DYNAMIC MODELS
* 8: Mike West: Bayesian Dynamic Modelling
* 9: Dani Gamerman and Esther Salazar: Hierarchical modeling in time
series: the factor analytic approach
* 10: Gabriel Huerta and Glenn A. Stark: Dynamic and spatial modeling
of block maxima extremes
* V SEQUENTIAL MONTE CARLO
* 11: Hedibert F. Lopes and Carlos M. Carvalho: Online Bayesian
learning in dynamic models: An illustrative introduction to particle
methods
* 12: Ana Paula Sales, Christopher Challis, Ryan Prenger, and Daniel
Merl: Semi-supervised Classification of Texts Using Particle Learning
for Probabilistic Automata
* VI NONPARAMETRICS
* 13: Stephen G Walker: Bayesian Nonparametrics
* 14: Ramsés H. Mena: Geometric Weight Priors and their Applications
* 15: Stephen G. Walker and George Karabatsos: Revisiting Bayesian
Curve Fitting Using Multivariate Normal Mixtures
* VII SPLINE MODELS AND COPULAS
* 16: Sally Wood: Applications of Bayesian Smoothing Splines
* 17: Michael Stanley Smith: Bayesian Approaches to Copula Modelling
* VIII MODEL ELABORATION AND PRIOR DISTRIBUTIONS
* 18: M.J. Bayarri and J.O. Berger: Hypothesis Testing and Model
Uncertainty
* 19: E. Gutiérrez-Peña and M. Mendoza: Proper and non-informative
conjugate priors for exponential family models
* 20: David Draper: Bayesian Model Specification: Heuristics and
Examples
* 21: Zesong Liu, Jesse Windle, and James G. Scott: Case studies in
Bayesian screening for time-varying model structure: The partition
problem
* IX REGRESSIONS AND MODEL AVERAGING
* 22: Hugh A. Chipman, Edward I. George and Robert E. McCulloch:
Bayesian Regression Structure Discovery
* 23: Robert B. Gramacy: Gibbs sampling for ordinary, robust and
logistic regression with Laplace priors
* 24: Merlise Clyde and Edwin S. Iversen: Bayesian Model Averaging in
the M-Open Framework
* X FINANCE AND ACTUARIAL SCIENCE
* 25: Eric Jacquier and Nicholas G Polson: Asset Allocation in Finance:
A Bayesian Perspective
* 26: Arthur Korteweg: Markov Chain Monte Carlo Methods in Corporate
Finance
* 27: Udi Makov: Actuarial Credibity Theory and Bayesian Statistics -
The Story of a Special Evolution
* XI MEDICINE AND BIOSTATISTICS
* 28: Peter Müller: Bayesian Models in Biostatistics and Medicine
* 29: Purushottam W. Laud, Siva Sivaganesan and Peter Müller: Subgroup
Analysis
* 30: Timothy E. Hanson and Alejandro Jara: Surviving Fully Bayesian
Nonparametric Regression Models
* XII INVERSE PROBLEMS AND APPLICATIONS
* 31: Colin Fox, Heikki Haario and J. Andrés Christen: Inverse Problems
* 32: Jari Kaipio and Ville Kolehmainen: Approximate marginalization
over modeling errors and uncertainties in inverse problems
* 33: C. Nakhleh, D. Higdon, C. K. Allen and R. Ryne: Bayesian
reconstruction of particle beam phase space
* Introduction
* I EXCHANGEABILITY
* 1: Michael Goldstein: Observables and Models: exchangeability and the
inductive argument
* 2: A. Philip Dawid: Exchangeability and its Ramifications
* II HIERARCHICAL MODELS
* 3: Alan E. Gelfand and Souparno Ghosh: Hierarchical Modeling
* 4: Sounak Chakraborty, Bani K Mallick and Malay Ghosh: Bayesian
Hierarchical Kernel Machines for Nonlinear Regression and
Classification
* 5: Athanasios Kottas and Kassandra Fronczyk: Flexible Bayesian
modelling for clustered categorical responses in developmental
toxicology
* III MARKOV CHAIN MONTE CARLO
* 6: Siddartha Chib: Markov chain Monte Carlo Methods
* 7: Jim E. Griffin and David A. Stephens: Advances in Markov chain
Monte Carlo
* IV DYNAMIC MODELS
* 8: Mike West: Bayesian Dynamic Modelling
* 9: Dani Gamerman and Esther Salazar: Hierarchical modeling in time
series: the factor analytic approach
* 10: Gabriel Huerta and Glenn A. Stark: Dynamic and spatial modeling
of block maxima extremes
* V SEQUENTIAL MONTE CARLO
* 11: Hedibert F. Lopes and Carlos M. Carvalho: Online Bayesian
learning in dynamic models: An illustrative introduction to particle
methods
* 12: Ana Paula Sales, Christopher Challis, Ryan Prenger, and Daniel
Merl: Semi-supervised Classification of Texts Using Particle Learning
for Probabilistic Automata
* VI NONPARAMETRICS
* 13: Stephen G Walker: Bayesian Nonparametrics
* 14: Ramsés H. Mena: Geometric Weight Priors and their Applications
* 15: Stephen G. Walker and George Karabatsos: Revisiting Bayesian
Curve Fitting Using Multivariate Normal Mixtures
* VII SPLINE MODELS AND COPULAS
* 16: Sally Wood: Applications of Bayesian Smoothing Splines
* 17: Michael Stanley Smith: Bayesian Approaches to Copula Modelling
* VIII MODEL ELABORATION AND PRIOR DISTRIBUTIONS
* 18: M.J. Bayarri and J.O. Berger: Hypothesis Testing and Model
Uncertainty
* 19: E. Gutiérrez-Peña and M. Mendoza: Proper and non-informative
conjugate priors for exponential family models
* 20: David Draper: Bayesian Model Specification: Heuristics and
Examples
* 21: Zesong Liu, Jesse Windle, and James G. Scott: Case studies in
Bayesian screening for time-varying model structure: The partition
problem
* IX REGRESSIONS AND MODEL AVERAGING
* 22: Hugh A. Chipman, Edward I. George and Robert E. McCulloch:
Bayesian Regression Structure Discovery
* 23: Robert B. Gramacy: Gibbs sampling for ordinary, robust and
logistic regression with Laplace priors
* 24: Merlise Clyde and Edwin S. Iversen: Bayesian Model Averaging in
the M-Open Framework
* X FINANCE AND ACTUARIAL SCIENCE
* 25: Eric Jacquier and Nicholas G Polson: Asset Allocation in Finance:
A Bayesian Perspective
* 26: Arthur Korteweg: Markov Chain Monte Carlo Methods in Corporate
Finance
* 27: Udi Makov: Actuarial Credibity Theory and Bayesian Statistics -
The Story of a Special Evolution
* XI MEDICINE AND BIOSTATISTICS
* 28: Peter Müller: Bayesian Models in Biostatistics and Medicine
* 29: Purushottam W. Laud, Siva Sivaganesan and Peter Müller: Subgroup
Analysis
* 30: Timothy E. Hanson and Alejandro Jara: Surviving Fully Bayesian
Nonparametric Regression Models
* XII INVERSE PROBLEMS AND APPLICATIONS
* 31: Colin Fox, Heikki Haario and J. Andrés Christen: Inverse Problems
* 32: Jari Kaipio and Ville Kolehmainen: Approximate marginalization
over modeling errors and uncertainties in inverse problems
* 33: C. Nakhleh, D. Higdon, C. K. Allen and R. Ryne: Bayesian
reconstruction of particle beam phase space
* I EXCHANGEABILITY
* 1: Michael Goldstein: Observables and Models: exchangeability and the
inductive argument
* 2: A. Philip Dawid: Exchangeability and its Ramifications
* II HIERARCHICAL MODELS
* 3: Alan E. Gelfand and Souparno Ghosh: Hierarchical Modeling
* 4: Sounak Chakraborty, Bani K Mallick and Malay Ghosh: Bayesian
Hierarchical Kernel Machines for Nonlinear Regression and
Classification
* 5: Athanasios Kottas and Kassandra Fronczyk: Flexible Bayesian
modelling for clustered categorical responses in developmental
toxicology
* III MARKOV CHAIN MONTE CARLO
* 6: Siddartha Chib: Markov chain Monte Carlo Methods
* 7: Jim E. Griffin and David A. Stephens: Advances in Markov chain
Monte Carlo
* IV DYNAMIC MODELS
* 8: Mike West: Bayesian Dynamic Modelling
* 9: Dani Gamerman and Esther Salazar: Hierarchical modeling in time
series: the factor analytic approach
* 10: Gabriel Huerta and Glenn A. Stark: Dynamic and spatial modeling
of block maxima extremes
* V SEQUENTIAL MONTE CARLO
* 11: Hedibert F. Lopes and Carlos M. Carvalho: Online Bayesian
learning in dynamic models: An illustrative introduction to particle
methods
* 12: Ana Paula Sales, Christopher Challis, Ryan Prenger, and Daniel
Merl: Semi-supervised Classification of Texts Using Particle Learning
for Probabilistic Automata
* VI NONPARAMETRICS
* 13: Stephen G Walker: Bayesian Nonparametrics
* 14: Ramsés H. Mena: Geometric Weight Priors and their Applications
* 15: Stephen G. Walker and George Karabatsos: Revisiting Bayesian
Curve Fitting Using Multivariate Normal Mixtures
* VII SPLINE MODELS AND COPULAS
* 16: Sally Wood: Applications of Bayesian Smoothing Splines
* 17: Michael Stanley Smith: Bayesian Approaches to Copula Modelling
* VIII MODEL ELABORATION AND PRIOR DISTRIBUTIONS
* 18: M.J. Bayarri and J.O. Berger: Hypothesis Testing and Model
Uncertainty
* 19: E. Gutiérrez-Peña and M. Mendoza: Proper and non-informative
conjugate priors for exponential family models
* 20: David Draper: Bayesian Model Specification: Heuristics and
Examples
* 21: Zesong Liu, Jesse Windle, and James G. Scott: Case studies in
Bayesian screening for time-varying model structure: The partition
problem
* IX REGRESSIONS AND MODEL AVERAGING
* 22: Hugh A. Chipman, Edward I. George and Robert E. McCulloch:
Bayesian Regression Structure Discovery
* 23: Robert B. Gramacy: Gibbs sampling for ordinary, robust and
logistic regression with Laplace priors
* 24: Merlise Clyde and Edwin S. Iversen: Bayesian Model Averaging in
the M-Open Framework
* X FINANCE AND ACTUARIAL SCIENCE
* 25: Eric Jacquier and Nicholas G Polson: Asset Allocation in Finance:
A Bayesian Perspective
* 26: Arthur Korteweg: Markov Chain Monte Carlo Methods in Corporate
Finance
* 27: Udi Makov: Actuarial Credibity Theory and Bayesian Statistics -
The Story of a Special Evolution
* XI MEDICINE AND BIOSTATISTICS
* 28: Peter Müller: Bayesian Models in Biostatistics and Medicine
* 29: Purushottam W. Laud, Siva Sivaganesan and Peter Müller: Subgroup
Analysis
* 30: Timothy E. Hanson and Alejandro Jara: Surviving Fully Bayesian
Nonparametric Regression Models
* XII INVERSE PROBLEMS AND APPLICATIONS
* 31: Colin Fox, Heikki Haario and J. Andrés Christen: Inverse Problems
* 32: Jari Kaipio and Ville Kolehmainen: Approximate marginalization
over modeling errors and uncertainties in inverse problems
* 33: C. Nakhleh, D. Higdon, C. K. Allen and R. Ryne: Bayesian
reconstruction of particle beam phase space