Belief Functions: Theory and Applications
8th International Conference, BELIEF 2024, Belfast, UK, September 2-4, 2024, Proceedings
Herausgegeben:Bi, Yaxin; Jousselme, Anne-Laure; Denoeux, Thierry
Belief Functions: Theory and Applications
8th International Conference, BELIEF 2024, Belfast, UK, September 2-4, 2024, Proceedings
Herausgegeben:Bi, Yaxin; Jousselme, Anne-Laure; Denoeux, Thierry
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book constitutes the refereed proceedings of the 8th International Conference on Belief Functions, BELIEF 2024, held in Belfast, UK, in September 2-4, 2024.
The 30 full papers presented in this book were carefully selected and reviewed from 36 submissions. The papers cover a wide range on theoretical aspects on Machine learning; Statistical inference; Information fusion and optimization; Measures of uncertainty, conflict and distances; Continuous belief functions, logics, computation.
- Belief Functions: Theory and Applications48,99 €
- Internet of Things of Big Data for Healthcare44,99 €
- Foundations of Information and Knowledge Systems52,99 €
- Federica CavicchioEmotion Detection in Natural Language Processing21,99 €
- Wei LiR-CALCULUS: A Logic of Belief Revision103,99 €
- Wei LiR-CALCULUS: A Logic of Belief Revision74,99 €
- Arthur P. Dempster / Ronald Yager / Liping Liu (eds.)Classic Works of the Dempster-Shafer Theory of Belief Functions251,99 €
-
-
-
The 30 full papers presented in this book were carefully selected and reviewed from 36 submissions. The papers cover a wide range on theoretical aspects on Machine learning; Statistical inference; Information fusion and optimization; Measures of uncertainty, conflict and distances; Continuous belief functions, logics, computation.
- Produktdetails
- Lecture Notes in Computer Science 14909
- Verlag: Springer / Springer Nature Switzerland / Springer, Berlin
- Artikelnr. des Verlages: 978-3-031-67976-6
- 2024
- Seitenzahl: 308
- Erscheinungstermin: 20. August 2024
- Englisch
- Abmessung: 235mm x 155mm x 17mm
- Gewicht: 470g
- ISBN-13: 9783031679766
- ISBN-10: 3031679768
- Artikelnr.: 71184601
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- Lecture Notes in Computer Science 14909
- Verlag: Springer / Springer Nature Switzerland / Springer, Berlin
- Artikelnr. des Verlages: 978-3-031-67976-6
- 2024
- Seitenzahl: 308
- Erscheinungstermin: 20. August 2024
- Englisch
- Abmessung: 235mm x 155mm x 17mm
- Gewicht: 470g
- ISBN-13: 9783031679766
- ISBN-10: 3031679768
- Artikelnr.: 71184601
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
.- Deep evidential clustering of images.
.- Incremental Belief-peaks Evidential Clustering.
.- Imprecise Deep Networks for Uncertain Image Classification.
.- Dempster-Shafer Credal Probabilistic Circuits.
.- Uncertainty quantification in regression neural networks using likelihood-based belief functions.
.- An evidential time-to-event prediction model based on Gaussian random fuzzy numbers.
.- Object Hallucination Detection in Large Vision Language Models via Evidential Conflict.
.- Multi-oversampling with evidence fusion for imbalanced data classification.
.- An Evidence-based Framework For Heterogeneous Electronic Health Records: A Case Study In Mortality Prediction.
.- Conflict Management in a Distance to Prototype-Based Evidential Deep Learning.
.- A Novel Privacy Preserving Framework for Training Dempster-Shafer Theory-based Evidential Deep Neural Network.
.- Statistical inference.
.- Large-sample theory for inferential models: A possibilistic Bernstein-von Mises theorem.
.- Variational approximations of possibilistic inferential models.
.- Decision theory via model-free generalized fiducial inference.
.- Which statistical hypotheses are afflicted with false confidence?.
.- Algebraic expression for the relative likelihood-based evidential prediction of an ordinal variable.
.- Information fusion and optimization.
.- Why Combining Belief Functions on Quantum Circuits?.
.- SHADED: Shapley Value-based Deceptive Evidence Detection in Belief Functions.
.- A Novel Optimization-Based Combination Rule for Dempster-Shafer Theory.
.- Fusing independent inferential models in a black-box manner.
.- Optimization under Severe Uncertainty: a Generalized Minimax Regret Approach for Problems with Linear Objectives.
.- Measures of uncertainty, conflict and distances.
.- A mean distance between elements of same class for rich labels.
.- Threshold Functions and Operations in the Theory of Evidence.
.- Mutual Information and Kullback-Leibler Divergence in the Dempster-Shafer Theory.
.- An OWA-based Distance Measure for Ordered Frames of Discernment.
.- Automated Hierarchical Conflict Reduction for Crowdsourced Annotation Tasks using Belief Functions.
.- Continuous belief functions, logics, computation.
.- Gamma Belief Functions.
.- Combination of Dependent Gaussian Random Fuzzy Numbers.
.- A 3-valued Logical Foundation for Evidential Reasoning.
.- Accelerated Dempster Shafer using Tensor Train Representation.
.- Deep evidential clustering of images.
.- Incremental Belief-peaks Evidential Clustering.
.- Imprecise Deep Networks for Uncertain Image Classification.
.- Dempster-Shafer Credal Probabilistic Circuits.
.- Uncertainty quantification in regression neural networks using likelihood-based belief functions.
.- An evidential time-to-event prediction model based on Gaussian random fuzzy numbers.
.- Object Hallucination Detection in Large Vision Language Models via Evidential Conflict.
.- Multi-oversampling with evidence fusion for imbalanced data classification.
.- An Evidence-based Framework For Heterogeneous Electronic Health Records: A Case Study In Mortality Prediction.
.- Conflict Management in a Distance to Prototype-Based Evidential Deep Learning.
.- A Novel Privacy Preserving Framework for Training Dempster-Shafer Theory-based Evidential Deep Neural Network.
.- Statistical inference.
.- Large-sample theory for inferential models: A possibilistic Bernstein-von Mises theorem.
.- Variational approximations of possibilistic inferential models.
.- Decision theory via model-free generalized fiducial inference.
.- Which statistical hypotheses are afflicted with false confidence?.
.- Algebraic expression for the relative likelihood-based evidential prediction of an ordinal variable.
.- Information fusion and optimization.
.- Why Combining Belief Functions on Quantum Circuits?.
.- SHADED: Shapley Value-based Deceptive Evidence Detection in Belief Functions.
.- A Novel Optimization-Based Combination Rule for Dempster-Shafer Theory.
.- Fusing independent inferential models in a black-box manner.
.- Optimization under Severe Uncertainty: a Generalized Minimax Regret Approach for Problems with Linear Objectives.
.- Measures of uncertainty, conflict and distances.
.- A mean distance between elements of same class for rich labels.
.- Threshold Functions and Operations in the Theory of Evidence.
.- Mutual Information and Kullback-Leibler Divergence in the Dempster-Shafer Theory.
.- An OWA-based Distance Measure for Ordered Frames of Discernment.
.- Automated Hierarchical Conflict Reduction for Crowdsourced Annotation Tasks using Belief Functions.
.- Continuous belief functions, logics, computation.
.- Gamma Belief Functions.
.- Combination of Dependent Gaussian Random Fuzzy Numbers.
.- A 3-valued Logical Foundation for Evidential Reasoning.
.- Accelerated Dempster Shafer using Tensor Train Representation.