Beyond-CMOS Nanodevices 1
Herausgeber: Balestra, Francis
Beyond-CMOS Nanodevices 1
Herausgeber: Balestra, Francis
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book offers a comprehensive review of the state-of-the-art in innovative Beyond-CMOS nanodevices for developing novel functionalities, logic and memories dedicated to researchers, engineers and students. It particularly focuses on the interest of nanostructures and nanodevices (nanowires, small slope switches, 2D layers, nanostructured materials, etc.) for advanced More than Moore (RF-nanosensors-energy harvesters, on-chip electronic cooling, etc.) and Beyond-CMOS logic and memories applications.
Andere Kunden interessierten sich auch für
- Beyond-CMOS Nanodevices 2194,99 €
- Nanodevices for Integrated Circuit Design207,99 €
- Nanoelectronic Circuit Design110,99 €
- Nanodevices for Photonics and Electronics180,99 €
- Krzysztof IniewskiNanoelectronics: Nanowires, Molecular Electronics, and Nanodevices166,99 €
- Low Power Designs in Nanodevices and Circuits for Emerging Applications216,99 €
- SUBHA SUBRAMANIAMJourney Towards Nanowires40,99 €
-
-
-
This book offers a comprehensive review of the state-of-the-art in innovative Beyond-CMOS nanodevices for developing novel functionalities, logic and memories dedicated to researchers, engineers and students. It particularly focuses on the interest of nanostructures and nanodevices (nanowires, small slope switches, 2D layers, nanostructured materials, etc.) for advanced More than Moore (RF-nanosensors-energy harvesters, on-chip electronic cooling, etc.) and Beyond-CMOS logic and memories applications.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley
- Seitenzahl: 528
- Erscheinungstermin: 14. Juli 2014
- Englisch
- Abmessung: 236mm x 163mm x 33mm
- Gewicht: 916g
- ISBN-13: 9781848216549
- ISBN-10: 1848216548
- Artikelnr.: 39577382
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Wiley
- Seitenzahl: 528
- Erscheinungstermin: 14. Juli 2014
- Englisch
- Abmessung: 236mm x 163mm x 33mm
- Gewicht: 916g
- ISBN-13: 9781848216549
- ISBN-10: 1848216548
- Artikelnr.: 39577382
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Francis Balestra received the M.S. and Ph.D. degrees in electronics from the Institut Polytechnique, Grenoble, France, in 1982 and 1985, respectively. He is a member of the European Academy of Sciences, of the Advisory Committee of the Chinese Journal of Semiconductors and Chinese Physics B and received the Blondel Medal (French SEE) in 2001. He is also member of the European ENIAC Scientific Community Council and several ENIAC/AENEAS Working Groups. F. Balestra has coauthored over 130 publications in international scientific journals, 240 communications at international conferences (more than 70 invited papers and review articles), and 20 books or chapters.
ACKNOWLEDGMENTS xiii
GENERAL INTRODUCTION xv
Francis BALESTRA
PART 1. SILION NANOWIRE BIOCHEMICAL SENSORS 1
PART 1. INTRODUCTION 3
Per-Erik HELLSTRÖM and Mikael ÖSTLING
CHAPTER 1. FABRICATION OF NANOWIRES 5
Jens BOLTEN, Per-Erik HELLSTRÖM, Mikael ÖSTLING, Céline TERNON and Pauline
SERRE
1.1. Introduction 5
1.2. Silicon nanowire fabrication with electron beam lithography 6
1.2.1. Key requirements 6
1.2.2. Why electron beam lithography? 7
1.2.3. Lithographic requirements 8
1.2.4. Tools, resist materials and development processes 9
1.2.5. Exposure strategies and proximity effect correction 10
1.2.6. Technology limitations and how to circumvent them 11
1.3. Silicon nanowire fabrication with sidewall transfer lithography 14
1.4. Si nanonet fabrication 17
1.4.1. Si NWs fabrication 18
1.4.2. Si nanonet assembling 19
1.4.3. Si nanonet morphology and properties 19
1.5. Acknowledgments 21
1.6. Bibliography 21
CHAPTER 2. FUNCTIONALIZATION OF SI-BASED NW FETs FOR DNA DETECTION 25
Valérie STAMBOULI, Céline TERNON, Pauline SERRE and Louis FRADETAL
2.1. Introduction 25
2.2. Functionalization process 27
2.3. Functionalization of Si nanonets for DNA biosensing 28
2.3.1. Detection of DNA hybridization on the Si nanonet by fluorescence
microscopy 31
2.3.2. Preliminary electrical characterizations of NW networks 33
2.4. Functionalization of SiC nanowire-based sensor for electrical DNA
biosensing35
2.4.1. SiC nanowire-based sensor functionalization process 35
2.4.2. DNA electrical detection from SiC nanowire-based sensor 38
2.5. Acknowledgments 39
2.6. Bibliography 40
CHAPTER 3. SENSITIVITY OF SILICON NANOWIRE BIOCHEMICAL SENSORS 43
Pierpaolo PALESTRI, Mireille MOUIS, Aryan AFZALIAN, Luca SELMI, Federico
PITTINO, Denis FLANDRE and Gérard GHIBAUDO
3.1. Introduction 43
3.1.1. Definitions 43
3.1.2. Main parameters affecting the sensitivity 47
3.2. Sensitivity and noise 47
3.3. Modeling the sensitivity of Si NW biosensors 50
3.3.1. Modeling the electrolyte 52
3.4. Sensitivity of random arrays of 1D nanostructures 54
3.4.1. Electrical characterization 55
3.4.2. Low-frequency noise characterization 56
3.4.3. Simulation of electron conduction in random networks of 1D
nanostructures 56
3.4.4. Discussion 59
3.5. Conclusions 59
3.6. Acknowledgments 60
3.7. Bibliography 60
CHAPTER 4. INTEGRATION OF SILICON NANOWIRES WITH CMOS 65
Per-Erik HELLSTRÖM, Ganesh JAYAKUMAR and Mikael ÖSTLING
4.1. Introduction 65
4.2. Overview of CMOS process technology 66
4.3. Integration of silicon nanowire after BEOL 66
4.4. Integration of silicon nanowires in FEOL 67
4.5. Sensor architecture design 69
4.6. Conclusions 71
4.7. Bibliography 72
CHAPTER 5. PORTABLE, INTEGRATED LOCK-IN-AMPLIFIER-BASED SYSTEM FOR
REAL-TIME IMPEDIMETRIC MEASUREMENTS ON NANOWIRES BIOSENSORS 73
Michele ROSSI and Marco TARTAGNI
5.1. Introduction 73
5.2. Portable stand-alone system 74
5.3. Integrated impedimetric interface 76
5.4. Impedimetric measurements on nanowire sensors 78
5.5. Bibliography 81
PART 2. NEW MATERIALS, DEVICES AND TECHNOLOGIES FOR ENERGY HARVESTING 83
PART 2. INTRODUCTION 85
Enrico SANGIORGI
CHAPTER 6. VIBRATIONAL ENERGY HARVESTING 89
Luca LARCHER, Saibal ROY, Dhiman MALLICK, Pranay PODDER, Massimo DE
VITTORIO, Teresa TODARO, Francesco GUIDO, Alessandro BERTACCHINI, Ronan
HINCHET, Julien KERAUDY and Gustavo ARDILA
6.1. Introduction 89
6.2. Piezoelectric energy transducer 91
6.2.1. Introduction 91
6.2.2. State-of-the-art devices and materials 92
6.2.3. MEMS piezoelectric vibration energy harvesting transducers 95
6.2.4. RMEMS prototypes characterization and discussions of experimental
results 102
6.2.5. Near field characterization techniques 104
6.2.6. Dedicated electro-mechanical models for piezoelectric transducer
design 106
6.3. Electromagnetic energy transducers 109
6.3.1. Introduction 109
6.3.2. State-of-the-art devices and materials 109
6.3.3. Vibration energy harvester exploiting both the piezoelectric and
electromagnetic effect 122
6.3.4. Device design 125
6.4. Bibliography 128
CHAPTER 7. THERMAL ENERGY HARVESTING 135
Mireille MOUIS, Emigdio CHÁVEZ-ÁNGEL, Clivia SOTOMAYOR-TORRES, Francesc
ALZINA, Marius V. COSTACHE, Androula G. NASSIOPOULOU, Katerina VALALAKI,
Emmanouel HOURDAKIS, Sergio O. VALENZUELA, Bernard VIALA, Dmitry ZAKHAROV,
Andrey SHCHEPETOV and Jouni AHOPELTO
7.1. Introduction 135
7.1.1. Basics of thermoelectric conversion 136
7.1.2. Strategies to increase ZT 137
7.1.3. Heavy-metal-free TE generation 140
7.1.4. Alternatives to TE harvesting for self-powered solid-state
microsystems 141
7.2. Thermal transport at nanoscale 142
7.2.1. Brief review of nanoscale thermal conductivity 143
7.2.2. The effect of phonon confinement 146
7.2.3. Fabrication of ultrathin free-standing silicon membranes 153
7.2.4. Advanced methods of characterizing phonon dispersion, lifetimes and
thermal conductivity 156
7.3. Porous silicon for thermal insulation on silicon wafers 172
7.3.1. Introduction 172
7.3.2. Thermal conductivity of nanostructured porous Si 172
7.3.3. Thermal isolation using thick porous Si layers 176
7.3.4. Thermoelectric generator using porous Si thermal isolation 177
7.4. Spin dependent thermoelectric effects 185
7.4.1. Physical principle and interest for thermal energy harvesting 186
7.4.2. Demonstration of the magnon drag effect 188
7.5. Composites of thermal shape memory alloy and piezoelectric materials
192
7.5.1. Introduction 192
7.5.2. Physical principle and interest for thermal energy harvesting 193
7.5.3. Novelty and realizations 194
7.5.4. Theoretical considerations 195
7.5.5. Examples of use 196
7.5.6. Summary of composite harvesting by the combination of SMA and
piezoelectric materials 204
7.6. Conclusions 204
7.7. Bibliography 205
CHAPTER 8. NANOWIRE BASED SOLAR CELLS 221
Mauro ZANUCCOLI, Anne KAMINSKI-CACHOPO, Jérôme MICHALLON, Vincent CONSONNI,
Igar SEMENIKHIN, Mehdi DAANOUNE, Frédérique DUCROQUET, David KOHEN,
Christine MORIN and Claudio FIEGNA
8.1 Introduction 221
8.2. Design of NW-based solar cells 223
8.2.1. Geometrical optimization of NW-based solar cells by numerical
simulations 223
8.2.2. TCAD simulation of NW-based solar cells 230
8.3. Fabrication and opto-electrical characterization of NW-based solar
cells 235
8.3.1. Elaboration of NW-based solar cells 235
8.3.2. Opto-electrical characterization of NW-based solar cells 236
8.4 Conclusion 243
8.5 Acknowledgments 243
8.6 Bibliography 243
CHAPTER 9. SMART ENERGY MANAGEMENT AND CONVERSION 249
Wensi WANG, James F. ROHAN, Ningning WANG, Mike HAYES, Aldo ROMANI, Enrico
MACRELLI, Michele DINI, Matteo FILIPPI, Marco TARTAGNI and Denis FLANDRE
9.1. Introduction 249
9.2. Power management solutions for energy harvesting devices 251
9.2.1. Ultra-low voltage thermoelectric energy harvesting 251
9.2.2. Sub-1mW photovoltaic energy harvesting 256
9.2.3. Piezoelectric and micro-electromagnetic energy harvesting 260
9.2.4. DC/DC power management for future micro-generator 262
9.3. Sub-mW energy storage solutions 266
9.4. Conclusions 270
9.5. Bibliography 271
PART 3. ON-CHIP ELECTRONIC COOLING 277
CHAPTER 10. TUNNEL JUNCTION ELECTRONIC COOLERS 279
Martin PREST, James RICHARDSON-BULLOCK, Terry WHALL, Evan PARKER and David
LEADLEY
10.1. Introduction and motivation 279
10.1.1. Existing cryogenic technology 280
10.2. Tunneling junctions as coolers 281
10.2.1. The NIS junction 281
10.2.2. Cooling power 284
10.2.3. Thermometry 286
10.2.4. The superconductor-insulator-normal metal-insulator-superconductor
(SINIS) structure 287
10.2.5. Double junction superconductor-silicon-superconductor (SSmS) cooler
288
10.3. Limitations to cooling 289
10.3.1. States within the superconductor gap 290
10.3.2. Joule heating 291
10.3.3. Series resistance 291
10.3.4. Quasi-particle-related heating 293
10.3.5. Andreev reflection 295
10.4. Heavy fermion-based coolers 297
10.5. Summary 299
10.6. Bibliography 300
CHAPTER 11. SILICON-BASED COOLING ELEMENTS 303
David LEADLEY, Martin PREST, Jouni AHOPELTO, Tom BRIEN, David GUNNARSSON,
Phil MAUSKOPF, Juha MUHONEN, Maksym MYRONOV, Hung NGUYEN, Evan PARKER, Mika
PRUNNILA, James RICHARDSON-BULLOCK, Vishal SHAH, Terry WHALL and Qing-Tai
ZHAO
11.1. Introduction to semiconductor-superconductor tunnel junction
coolers 303
11.2. Silicon-based Schottky barrier junctions 304
11.3. Carrier-phonon coupling in strained silicon 308
11.3.1. Measurement of electron-phonon coupling constant 312
11.4. Strained silicon Schottky barrier mK coolers 315
11.5. Silicon mK coolers with an oxide barrier [GUN 13] 318
11.5.1. Reduction of sub-gap leakage 318
11.5.2. Effects of strain 319
11.6. The silicon cold electron bolometer 321
11.7. Integration of detector and electronics 324
11.8. Summary and future prospects 325
11.9. Acknowledgments 327
11.10 Bibliography 327
CHAPTER 12. THERMAL ISOLATION THROUGH NANOSTRUCTURING. 331
David LEADLEY, Vishal SHAH, Jouni AHOPELTO, Francesc ALZINA, Emigdio
CHÁVEZ-ÁNGEL, Juha MUHONEN, Maksym MYRONOV, Androula G. NASSIOPOULOU, Hung
NGUYEN, Evan PARKER, Jukka PEKOLA, Martin PREST, Mika PRUNNILA, Juan
Sebastian REPARAZ, Andrey SHCHEPETOV, Clivia SOTOMAYOR-TORRES, Katerina
VALALAKI and Terry WHALL
12.1. Introduction 331
12.2. Lattice cooling by physical nanostructuring 331
12.3. Porous Si membranes as cryogenic thermal isolation platforms 337
12.3.1. Porous Si micro-coldplates 337
12.3.2. Porous Si thermal conductivity 339
12.4. Crystalline membrane platforms 343
12.4.1. Strained germanium membranes 343
12.4.2. Thermal conductance measurements in Si and Ge membranes 350
12.4.3. Epitaxy-compatible thermal isolation platform 355
12.5. Summary of thermal conductance measurements 355
12.6. Acknowledgments. 358
12.7. Bibliography 358
PART 4. NEW MATERIALS, DEVICES AND TECHNOLOGIES FOR RF APPLICATIONS 365
PART 4. INTRODUCTION 367
Androula G. NASSIOPOULOU
CHAPTER 13. SUBSTRATE TECHNOLOGIES FOR SILICON-INTEGRATED RF AND MM-WAVE
PASSIVE DEVICES 373
Androula G. NASSIOPOULOU, Panagiotis SARAFIS, Jean-Pierre RASKIN, Hanza
ISSA, Philippe FERRARI
13.1. Introduction 373
13.2. High-resistivity Si substrate for RF 374
13.2.1. Losses along coplanar waveguide transmission lines 375
13.2.2. Crosstalk 380
13.2.3. Nonlinearities along CPW lines 384
13.3. Porous Si substrate technology 385
13.3.1. General properties of porous Si 386
13.3.2. Dielectric properties of porous Si 389
13.3.3. Broadband electrical characterization of CPWT Lines on porous Si
393
13.3.4. Inductors on porous Si397
13.3.5. Antennas on porous Si399
13.4. Comparison between HR Si and local porous Si substrate technologies
400
13.4.1. Comparison of similar CPW TLines on different substrates 400
13.4.2. Comparison of inductors on different RF substrates 404
13.5. Design of slow-wave CPWs and filters on porous silicon 404
13.5.1. Slow-wave CPW TLines on porous Si 405
13.5.2. Simulation results for S-CPW TLines 406
13.5.3. Stepped impedance low-pass filter on porous silicon 408
13.5.4. Simulation results for filters 409
13.6. Conclusion 411
13.7. Acknowledgments 411
13.8. Bibliography 411
CHAPTER 14. METAL NANOLINES AND ANTENNAS FOR RF AND MM-WAVE APPLICATIONS
419
Philippe BENECH, Chuan-Lun HSU, Gustavo ARDILA, Panagiotis SARAFIS and
Androula G. NASSIOPOULOU
14.1. Introduction 419
14.2. Metal nanowires (nanolines) 420
14.2.1. General properties 420
14.2.2. Transmission nanolines in microstrip configuration:
characterization and modeling 426
14.2.3. Transmission nanolines in CPW configuration: fabrication,
characterization and modeling 430
14.2.4. Characterization up to 200 GHz 440
14.3. Antennas 441
14.3.1. On-chip antennas: general 441
14.3.2. On-chip antenna characterization method 443
14.3.3. Measurement results 444
14.3.4. Discussion on antenna results 451
14.4. Conclusion 451
14.5. Acknowledgments 452
14.6. Bibliography 452
CHAPTER 15. NANOSTRUCTURED MAGNETIC MATERIALS FOR HIGH-FREQUENCY
APPLICATIONS 457
Saibal ROY, Jeffrey GODSELL and Tuhin MAITY
15.1. Introduction 457
15.2. Power conversion and integration 457
15.3. Materials and integration 459
15.4. Controlling the magnetic properties 463
15.5. Magnetic properties of nanocomposite materials 467
15.6. Magnetic properties of nanomodulated continuous films 470
15.7. Conclusion 478
15.8. Bibliography 479
LIST OF AUTHORS 485
INDEX 493
GENERAL INTRODUCTION xv
Francis BALESTRA
PART 1. SILION NANOWIRE BIOCHEMICAL SENSORS 1
PART 1. INTRODUCTION 3
Per-Erik HELLSTRÖM and Mikael ÖSTLING
CHAPTER 1. FABRICATION OF NANOWIRES 5
Jens BOLTEN, Per-Erik HELLSTRÖM, Mikael ÖSTLING, Céline TERNON and Pauline
SERRE
1.1. Introduction 5
1.2. Silicon nanowire fabrication with electron beam lithography 6
1.2.1. Key requirements 6
1.2.2. Why electron beam lithography? 7
1.2.3. Lithographic requirements 8
1.2.4. Tools, resist materials and development processes 9
1.2.5. Exposure strategies and proximity effect correction 10
1.2.6. Technology limitations and how to circumvent them 11
1.3. Silicon nanowire fabrication with sidewall transfer lithography 14
1.4. Si nanonet fabrication 17
1.4.1. Si NWs fabrication 18
1.4.2. Si nanonet assembling 19
1.4.3. Si nanonet morphology and properties 19
1.5. Acknowledgments 21
1.6. Bibliography 21
CHAPTER 2. FUNCTIONALIZATION OF SI-BASED NW FETs FOR DNA DETECTION 25
Valérie STAMBOULI, Céline TERNON, Pauline SERRE and Louis FRADETAL
2.1. Introduction 25
2.2. Functionalization process 27
2.3. Functionalization of Si nanonets for DNA biosensing 28
2.3.1. Detection of DNA hybridization on the Si nanonet by fluorescence
microscopy 31
2.3.2. Preliminary electrical characterizations of NW networks 33
2.4. Functionalization of SiC nanowire-based sensor for electrical DNA
biosensing35
2.4.1. SiC nanowire-based sensor functionalization process 35
2.4.2. DNA electrical detection from SiC nanowire-based sensor 38
2.5. Acknowledgments 39
2.6. Bibliography 40
CHAPTER 3. SENSITIVITY OF SILICON NANOWIRE BIOCHEMICAL SENSORS 43
Pierpaolo PALESTRI, Mireille MOUIS, Aryan AFZALIAN, Luca SELMI, Federico
PITTINO, Denis FLANDRE and Gérard GHIBAUDO
3.1. Introduction 43
3.1.1. Definitions 43
3.1.2. Main parameters affecting the sensitivity 47
3.2. Sensitivity and noise 47
3.3. Modeling the sensitivity of Si NW biosensors 50
3.3.1. Modeling the electrolyte 52
3.4. Sensitivity of random arrays of 1D nanostructures 54
3.4.1. Electrical characterization 55
3.4.2. Low-frequency noise characterization 56
3.4.3. Simulation of electron conduction in random networks of 1D
nanostructures 56
3.4.4. Discussion 59
3.5. Conclusions 59
3.6. Acknowledgments 60
3.7. Bibliography 60
CHAPTER 4. INTEGRATION OF SILICON NANOWIRES WITH CMOS 65
Per-Erik HELLSTRÖM, Ganesh JAYAKUMAR and Mikael ÖSTLING
4.1. Introduction 65
4.2. Overview of CMOS process technology 66
4.3. Integration of silicon nanowire after BEOL 66
4.4. Integration of silicon nanowires in FEOL 67
4.5. Sensor architecture design 69
4.6. Conclusions 71
4.7. Bibliography 72
CHAPTER 5. PORTABLE, INTEGRATED LOCK-IN-AMPLIFIER-BASED SYSTEM FOR
REAL-TIME IMPEDIMETRIC MEASUREMENTS ON NANOWIRES BIOSENSORS 73
Michele ROSSI and Marco TARTAGNI
5.1. Introduction 73
5.2. Portable stand-alone system 74
5.3. Integrated impedimetric interface 76
5.4. Impedimetric measurements on nanowire sensors 78
5.5. Bibliography 81
PART 2. NEW MATERIALS, DEVICES AND TECHNOLOGIES FOR ENERGY HARVESTING 83
PART 2. INTRODUCTION 85
Enrico SANGIORGI
CHAPTER 6. VIBRATIONAL ENERGY HARVESTING 89
Luca LARCHER, Saibal ROY, Dhiman MALLICK, Pranay PODDER, Massimo DE
VITTORIO, Teresa TODARO, Francesco GUIDO, Alessandro BERTACCHINI, Ronan
HINCHET, Julien KERAUDY and Gustavo ARDILA
6.1. Introduction 89
6.2. Piezoelectric energy transducer 91
6.2.1. Introduction 91
6.2.2. State-of-the-art devices and materials 92
6.2.3. MEMS piezoelectric vibration energy harvesting transducers 95
6.2.4. RMEMS prototypes characterization and discussions of experimental
results 102
6.2.5. Near field characterization techniques 104
6.2.6. Dedicated electro-mechanical models for piezoelectric transducer
design 106
6.3. Electromagnetic energy transducers 109
6.3.1. Introduction 109
6.3.2. State-of-the-art devices and materials 109
6.3.3. Vibration energy harvester exploiting both the piezoelectric and
electromagnetic effect 122
6.3.4. Device design 125
6.4. Bibliography 128
CHAPTER 7. THERMAL ENERGY HARVESTING 135
Mireille MOUIS, Emigdio CHÁVEZ-ÁNGEL, Clivia SOTOMAYOR-TORRES, Francesc
ALZINA, Marius V. COSTACHE, Androula G. NASSIOPOULOU, Katerina VALALAKI,
Emmanouel HOURDAKIS, Sergio O. VALENZUELA, Bernard VIALA, Dmitry ZAKHAROV,
Andrey SHCHEPETOV and Jouni AHOPELTO
7.1. Introduction 135
7.1.1. Basics of thermoelectric conversion 136
7.1.2. Strategies to increase ZT 137
7.1.3. Heavy-metal-free TE generation 140
7.1.4. Alternatives to TE harvesting for self-powered solid-state
microsystems 141
7.2. Thermal transport at nanoscale 142
7.2.1. Brief review of nanoscale thermal conductivity 143
7.2.2. The effect of phonon confinement 146
7.2.3. Fabrication of ultrathin free-standing silicon membranes 153
7.2.4. Advanced methods of characterizing phonon dispersion, lifetimes and
thermal conductivity 156
7.3. Porous silicon for thermal insulation on silicon wafers 172
7.3.1. Introduction 172
7.3.2. Thermal conductivity of nanostructured porous Si 172
7.3.3. Thermal isolation using thick porous Si layers 176
7.3.4. Thermoelectric generator using porous Si thermal isolation 177
7.4. Spin dependent thermoelectric effects 185
7.4.1. Physical principle and interest for thermal energy harvesting 186
7.4.2. Demonstration of the magnon drag effect 188
7.5. Composites of thermal shape memory alloy and piezoelectric materials
192
7.5.1. Introduction 192
7.5.2. Physical principle and interest for thermal energy harvesting 193
7.5.3. Novelty and realizations 194
7.5.4. Theoretical considerations 195
7.5.5. Examples of use 196
7.5.6. Summary of composite harvesting by the combination of SMA and
piezoelectric materials 204
7.6. Conclusions 204
7.7. Bibliography 205
CHAPTER 8. NANOWIRE BASED SOLAR CELLS 221
Mauro ZANUCCOLI, Anne KAMINSKI-CACHOPO, Jérôme MICHALLON, Vincent CONSONNI,
Igar SEMENIKHIN, Mehdi DAANOUNE, Frédérique DUCROQUET, David KOHEN,
Christine MORIN and Claudio FIEGNA
8.1 Introduction 221
8.2. Design of NW-based solar cells 223
8.2.1. Geometrical optimization of NW-based solar cells by numerical
simulations 223
8.2.2. TCAD simulation of NW-based solar cells 230
8.3. Fabrication and opto-electrical characterization of NW-based solar
cells 235
8.3.1. Elaboration of NW-based solar cells 235
8.3.2. Opto-electrical characterization of NW-based solar cells 236
8.4 Conclusion 243
8.5 Acknowledgments 243
8.6 Bibliography 243
CHAPTER 9. SMART ENERGY MANAGEMENT AND CONVERSION 249
Wensi WANG, James F. ROHAN, Ningning WANG, Mike HAYES, Aldo ROMANI, Enrico
MACRELLI, Michele DINI, Matteo FILIPPI, Marco TARTAGNI and Denis FLANDRE
9.1. Introduction 249
9.2. Power management solutions for energy harvesting devices 251
9.2.1. Ultra-low voltage thermoelectric energy harvesting 251
9.2.2. Sub-1mW photovoltaic energy harvesting 256
9.2.3. Piezoelectric and micro-electromagnetic energy harvesting 260
9.2.4. DC/DC power management for future micro-generator 262
9.3. Sub-mW energy storage solutions 266
9.4. Conclusions 270
9.5. Bibliography 271
PART 3. ON-CHIP ELECTRONIC COOLING 277
CHAPTER 10. TUNNEL JUNCTION ELECTRONIC COOLERS 279
Martin PREST, James RICHARDSON-BULLOCK, Terry WHALL, Evan PARKER and David
LEADLEY
10.1. Introduction and motivation 279
10.1.1. Existing cryogenic technology 280
10.2. Tunneling junctions as coolers 281
10.2.1. The NIS junction 281
10.2.2. Cooling power 284
10.2.3. Thermometry 286
10.2.4. The superconductor-insulator-normal metal-insulator-superconductor
(SINIS) structure 287
10.2.5. Double junction superconductor-silicon-superconductor (SSmS) cooler
288
10.3. Limitations to cooling 289
10.3.1. States within the superconductor gap 290
10.3.2. Joule heating 291
10.3.3. Series resistance 291
10.3.4. Quasi-particle-related heating 293
10.3.5. Andreev reflection 295
10.4. Heavy fermion-based coolers 297
10.5. Summary 299
10.6. Bibliography 300
CHAPTER 11. SILICON-BASED COOLING ELEMENTS 303
David LEADLEY, Martin PREST, Jouni AHOPELTO, Tom BRIEN, David GUNNARSSON,
Phil MAUSKOPF, Juha MUHONEN, Maksym MYRONOV, Hung NGUYEN, Evan PARKER, Mika
PRUNNILA, James RICHARDSON-BULLOCK, Vishal SHAH, Terry WHALL and Qing-Tai
ZHAO
11.1. Introduction to semiconductor-superconductor tunnel junction
coolers 303
11.2. Silicon-based Schottky barrier junctions 304
11.3. Carrier-phonon coupling in strained silicon 308
11.3.1. Measurement of electron-phonon coupling constant 312
11.4. Strained silicon Schottky barrier mK coolers 315
11.5. Silicon mK coolers with an oxide barrier [GUN 13] 318
11.5.1. Reduction of sub-gap leakage 318
11.5.2. Effects of strain 319
11.6. The silicon cold electron bolometer 321
11.7. Integration of detector and electronics 324
11.8. Summary and future prospects 325
11.9. Acknowledgments 327
11.10 Bibliography 327
CHAPTER 12. THERMAL ISOLATION THROUGH NANOSTRUCTURING. 331
David LEADLEY, Vishal SHAH, Jouni AHOPELTO, Francesc ALZINA, Emigdio
CHÁVEZ-ÁNGEL, Juha MUHONEN, Maksym MYRONOV, Androula G. NASSIOPOULOU, Hung
NGUYEN, Evan PARKER, Jukka PEKOLA, Martin PREST, Mika PRUNNILA, Juan
Sebastian REPARAZ, Andrey SHCHEPETOV, Clivia SOTOMAYOR-TORRES, Katerina
VALALAKI and Terry WHALL
12.1. Introduction 331
12.2. Lattice cooling by physical nanostructuring 331
12.3. Porous Si membranes as cryogenic thermal isolation platforms 337
12.3.1. Porous Si micro-coldplates 337
12.3.2. Porous Si thermal conductivity 339
12.4. Crystalline membrane platforms 343
12.4.1. Strained germanium membranes 343
12.4.2. Thermal conductance measurements in Si and Ge membranes 350
12.4.3. Epitaxy-compatible thermal isolation platform 355
12.5. Summary of thermal conductance measurements 355
12.6. Acknowledgments. 358
12.7. Bibliography 358
PART 4. NEW MATERIALS, DEVICES AND TECHNOLOGIES FOR RF APPLICATIONS 365
PART 4. INTRODUCTION 367
Androula G. NASSIOPOULOU
CHAPTER 13. SUBSTRATE TECHNOLOGIES FOR SILICON-INTEGRATED RF AND MM-WAVE
PASSIVE DEVICES 373
Androula G. NASSIOPOULOU, Panagiotis SARAFIS, Jean-Pierre RASKIN, Hanza
ISSA, Philippe FERRARI
13.1. Introduction 373
13.2. High-resistivity Si substrate for RF 374
13.2.1. Losses along coplanar waveguide transmission lines 375
13.2.2. Crosstalk 380
13.2.3. Nonlinearities along CPW lines 384
13.3. Porous Si substrate technology 385
13.3.1. General properties of porous Si 386
13.3.2. Dielectric properties of porous Si 389
13.3.3. Broadband electrical characterization of CPWT Lines on porous Si
393
13.3.4. Inductors on porous Si397
13.3.5. Antennas on porous Si399
13.4. Comparison between HR Si and local porous Si substrate technologies
400
13.4.1. Comparison of similar CPW TLines on different substrates 400
13.4.2. Comparison of inductors on different RF substrates 404
13.5. Design of slow-wave CPWs and filters on porous silicon 404
13.5.1. Slow-wave CPW TLines on porous Si 405
13.5.2. Simulation results for S-CPW TLines 406
13.5.3. Stepped impedance low-pass filter on porous silicon 408
13.5.4. Simulation results for filters 409
13.6. Conclusion 411
13.7. Acknowledgments 411
13.8. Bibliography 411
CHAPTER 14. METAL NANOLINES AND ANTENNAS FOR RF AND MM-WAVE APPLICATIONS
419
Philippe BENECH, Chuan-Lun HSU, Gustavo ARDILA, Panagiotis SARAFIS and
Androula G. NASSIOPOULOU
14.1. Introduction 419
14.2. Metal nanowires (nanolines) 420
14.2.1. General properties 420
14.2.2. Transmission nanolines in microstrip configuration:
characterization and modeling 426
14.2.3. Transmission nanolines in CPW configuration: fabrication,
characterization and modeling 430
14.2.4. Characterization up to 200 GHz 440
14.3. Antennas 441
14.3.1. On-chip antennas: general 441
14.3.2. On-chip antenna characterization method 443
14.3.3. Measurement results 444
14.3.4. Discussion on antenna results 451
14.4. Conclusion 451
14.5. Acknowledgments 452
14.6. Bibliography 452
CHAPTER 15. NANOSTRUCTURED MAGNETIC MATERIALS FOR HIGH-FREQUENCY
APPLICATIONS 457
Saibal ROY, Jeffrey GODSELL and Tuhin MAITY
15.1. Introduction 457
15.2. Power conversion and integration 457
15.3. Materials and integration 459
15.4. Controlling the magnetic properties 463
15.5. Magnetic properties of nanocomposite materials 467
15.6. Magnetic properties of nanomodulated continuous films 470
15.7. Conclusion 478
15.8. Bibliography 479
LIST OF AUTHORS 485
INDEX 493
ACKNOWLEDGMENTS xiii
GENERAL INTRODUCTION xv
Francis BALESTRA
PART 1. SILION NANOWIRE BIOCHEMICAL SENSORS 1
PART 1. INTRODUCTION 3
Per-Erik HELLSTRÖM and Mikael ÖSTLING
CHAPTER 1. FABRICATION OF NANOWIRES 5
Jens BOLTEN, Per-Erik HELLSTRÖM, Mikael ÖSTLING, Céline TERNON and Pauline
SERRE
1.1. Introduction 5
1.2. Silicon nanowire fabrication with electron beam lithography 6
1.2.1. Key requirements 6
1.2.2. Why electron beam lithography? 7
1.2.3. Lithographic requirements 8
1.2.4. Tools, resist materials and development processes 9
1.2.5. Exposure strategies and proximity effect correction 10
1.2.6. Technology limitations and how to circumvent them 11
1.3. Silicon nanowire fabrication with sidewall transfer lithography 14
1.4. Si nanonet fabrication 17
1.4.1. Si NWs fabrication 18
1.4.2. Si nanonet assembling 19
1.4.3. Si nanonet morphology and properties 19
1.5. Acknowledgments 21
1.6. Bibliography 21
CHAPTER 2. FUNCTIONALIZATION OF SI-BASED NW FETs FOR DNA DETECTION 25
Valérie STAMBOULI, Céline TERNON, Pauline SERRE and Louis FRADETAL
2.1. Introduction 25
2.2. Functionalization process 27
2.3. Functionalization of Si nanonets for DNA biosensing 28
2.3.1. Detection of DNA hybridization on the Si nanonet by fluorescence
microscopy 31
2.3.2. Preliminary electrical characterizations of NW networks 33
2.4. Functionalization of SiC nanowire-based sensor for electrical DNA
biosensing35
2.4.1. SiC nanowire-based sensor functionalization process 35
2.4.2. DNA electrical detection from SiC nanowire-based sensor 38
2.5. Acknowledgments 39
2.6. Bibliography 40
CHAPTER 3. SENSITIVITY OF SILICON NANOWIRE BIOCHEMICAL SENSORS 43
Pierpaolo PALESTRI, Mireille MOUIS, Aryan AFZALIAN, Luca SELMI, Federico
PITTINO, Denis FLANDRE and Gérard GHIBAUDO
3.1. Introduction 43
3.1.1. Definitions 43
3.1.2. Main parameters affecting the sensitivity 47
3.2. Sensitivity and noise 47
3.3. Modeling the sensitivity of Si NW biosensors 50
3.3.1. Modeling the electrolyte 52
3.4. Sensitivity of random arrays of 1D nanostructures 54
3.4.1. Electrical characterization 55
3.4.2. Low-frequency noise characterization 56
3.4.3. Simulation of electron conduction in random networks of 1D
nanostructures 56
3.4.4. Discussion 59
3.5. Conclusions 59
3.6. Acknowledgments 60
3.7. Bibliography 60
CHAPTER 4. INTEGRATION OF SILICON NANOWIRES WITH CMOS 65
Per-Erik HELLSTRÖM, Ganesh JAYAKUMAR and Mikael ÖSTLING
4.1. Introduction 65
4.2. Overview of CMOS process technology 66
4.3. Integration of silicon nanowire after BEOL 66
4.4. Integration of silicon nanowires in FEOL 67
4.5. Sensor architecture design 69
4.6. Conclusions 71
4.7. Bibliography 72
CHAPTER 5. PORTABLE, INTEGRATED LOCK-IN-AMPLIFIER-BASED SYSTEM FOR
REAL-TIME IMPEDIMETRIC MEASUREMENTS ON NANOWIRES BIOSENSORS 73
Michele ROSSI and Marco TARTAGNI
5.1. Introduction 73
5.2. Portable stand-alone system 74
5.3. Integrated impedimetric interface 76
5.4. Impedimetric measurements on nanowire sensors 78
5.5. Bibliography 81
PART 2. NEW MATERIALS, DEVICES AND TECHNOLOGIES FOR ENERGY HARVESTING 83
PART 2. INTRODUCTION 85
Enrico SANGIORGI
CHAPTER 6. VIBRATIONAL ENERGY HARVESTING 89
Luca LARCHER, Saibal ROY, Dhiman MALLICK, Pranay PODDER, Massimo DE
VITTORIO, Teresa TODARO, Francesco GUIDO, Alessandro BERTACCHINI, Ronan
HINCHET, Julien KERAUDY and Gustavo ARDILA
6.1. Introduction 89
6.2. Piezoelectric energy transducer 91
6.2.1. Introduction 91
6.2.2. State-of-the-art devices and materials 92
6.2.3. MEMS piezoelectric vibration energy harvesting transducers 95
6.2.4. RMEMS prototypes characterization and discussions of experimental
results 102
6.2.5. Near field characterization techniques 104
6.2.6. Dedicated electro-mechanical models for piezoelectric transducer
design 106
6.3. Electromagnetic energy transducers 109
6.3.1. Introduction 109
6.3.2. State-of-the-art devices and materials 109
6.3.3. Vibration energy harvester exploiting both the piezoelectric and
electromagnetic effect 122
6.3.4. Device design 125
6.4. Bibliography 128
CHAPTER 7. THERMAL ENERGY HARVESTING 135
Mireille MOUIS, Emigdio CHÁVEZ-ÁNGEL, Clivia SOTOMAYOR-TORRES, Francesc
ALZINA, Marius V. COSTACHE, Androula G. NASSIOPOULOU, Katerina VALALAKI,
Emmanouel HOURDAKIS, Sergio O. VALENZUELA, Bernard VIALA, Dmitry ZAKHAROV,
Andrey SHCHEPETOV and Jouni AHOPELTO
7.1. Introduction 135
7.1.1. Basics of thermoelectric conversion 136
7.1.2. Strategies to increase ZT 137
7.1.3. Heavy-metal-free TE generation 140
7.1.4. Alternatives to TE harvesting for self-powered solid-state
microsystems 141
7.2. Thermal transport at nanoscale 142
7.2.1. Brief review of nanoscale thermal conductivity 143
7.2.2. The effect of phonon confinement 146
7.2.3. Fabrication of ultrathin free-standing silicon membranes 153
7.2.4. Advanced methods of characterizing phonon dispersion, lifetimes and
thermal conductivity 156
7.3. Porous silicon for thermal insulation on silicon wafers 172
7.3.1. Introduction 172
7.3.2. Thermal conductivity of nanostructured porous Si 172
7.3.3. Thermal isolation using thick porous Si layers 176
7.3.4. Thermoelectric generator using porous Si thermal isolation 177
7.4. Spin dependent thermoelectric effects 185
7.4.1. Physical principle and interest for thermal energy harvesting 186
7.4.2. Demonstration of the magnon drag effect 188
7.5. Composites of thermal shape memory alloy and piezoelectric materials
192
7.5.1. Introduction 192
7.5.2. Physical principle and interest for thermal energy harvesting 193
7.5.3. Novelty and realizations 194
7.5.4. Theoretical considerations 195
7.5.5. Examples of use 196
7.5.6. Summary of composite harvesting by the combination of SMA and
piezoelectric materials 204
7.6. Conclusions 204
7.7. Bibliography 205
CHAPTER 8. NANOWIRE BASED SOLAR CELLS 221
Mauro ZANUCCOLI, Anne KAMINSKI-CACHOPO, Jérôme MICHALLON, Vincent CONSONNI,
Igar SEMENIKHIN, Mehdi DAANOUNE, Frédérique DUCROQUET, David KOHEN,
Christine MORIN and Claudio FIEGNA
8.1 Introduction 221
8.2. Design of NW-based solar cells 223
8.2.1. Geometrical optimization of NW-based solar cells by numerical
simulations 223
8.2.2. TCAD simulation of NW-based solar cells 230
8.3. Fabrication and opto-electrical characterization of NW-based solar
cells 235
8.3.1. Elaboration of NW-based solar cells 235
8.3.2. Opto-electrical characterization of NW-based solar cells 236
8.4 Conclusion 243
8.5 Acknowledgments 243
8.6 Bibliography 243
CHAPTER 9. SMART ENERGY MANAGEMENT AND CONVERSION 249
Wensi WANG, James F. ROHAN, Ningning WANG, Mike HAYES, Aldo ROMANI, Enrico
MACRELLI, Michele DINI, Matteo FILIPPI, Marco TARTAGNI and Denis FLANDRE
9.1. Introduction 249
9.2. Power management solutions for energy harvesting devices 251
9.2.1. Ultra-low voltage thermoelectric energy harvesting 251
9.2.2. Sub-1mW photovoltaic energy harvesting 256
9.2.3. Piezoelectric and micro-electromagnetic energy harvesting 260
9.2.4. DC/DC power management for future micro-generator 262
9.3. Sub-mW energy storage solutions 266
9.4. Conclusions 270
9.5. Bibliography 271
PART 3. ON-CHIP ELECTRONIC COOLING 277
CHAPTER 10. TUNNEL JUNCTION ELECTRONIC COOLERS 279
Martin PREST, James RICHARDSON-BULLOCK, Terry WHALL, Evan PARKER and David
LEADLEY
10.1. Introduction and motivation 279
10.1.1. Existing cryogenic technology 280
10.2. Tunneling junctions as coolers 281
10.2.1. The NIS junction 281
10.2.2. Cooling power 284
10.2.3. Thermometry 286
10.2.4. The superconductor-insulator-normal metal-insulator-superconductor
(SINIS) structure 287
10.2.5. Double junction superconductor-silicon-superconductor (SSmS) cooler
288
10.3. Limitations to cooling 289
10.3.1. States within the superconductor gap 290
10.3.2. Joule heating 291
10.3.3. Series resistance 291
10.3.4. Quasi-particle-related heating 293
10.3.5. Andreev reflection 295
10.4. Heavy fermion-based coolers 297
10.5. Summary 299
10.6. Bibliography 300
CHAPTER 11. SILICON-BASED COOLING ELEMENTS 303
David LEADLEY, Martin PREST, Jouni AHOPELTO, Tom BRIEN, David GUNNARSSON,
Phil MAUSKOPF, Juha MUHONEN, Maksym MYRONOV, Hung NGUYEN, Evan PARKER, Mika
PRUNNILA, James RICHARDSON-BULLOCK, Vishal SHAH, Terry WHALL and Qing-Tai
ZHAO
11.1. Introduction to semiconductor-superconductor tunnel junction
coolers 303
11.2. Silicon-based Schottky barrier junctions 304
11.3. Carrier-phonon coupling in strained silicon 308
11.3.1. Measurement of electron-phonon coupling constant 312
11.4. Strained silicon Schottky barrier mK coolers 315
11.5. Silicon mK coolers with an oxide barrier [GUN 13] 318
11.5.1. Reduction of sub-gap leakage 318
11.5.2. Effects of strain 319
11.6. The silicon cold electron bolometer 321
11.7. Integration of detector and electronics 324
11.8. Summary and future prospects 325
11.9. Acknowledgments 327
11.10 Bibliography 327
CHAPTER 12. THERMAL ISOLATION THROUGH NANOSTRUCTURING. 331
David LEADLEY, Vishal SHAH, Jouni AHOPELTO, Francesc ALZINA, Emigdio
CHÁVEZ-ÁNGEL, Juha MUHONEN, Maksym MYRONOV, Androula G. NASSIOPOULOU, Hung
NGUYEN, Evan PARKER, Jukka PEKOLA, Martin PREST, Mika PRUNNILA, Juan
Sebastian REPARAZ, Andrey SHCHEPETOV, Clivia SOTOMAYOR-TORRES, Katerina
VALALAKI and Terry WHALL
12.1. Introduction 331
12.2. Lattice cooling by physical nanostructuring 331
12.3. Porous Si membranes as cryogenic thermal isolation platforms 337
12.3.1. Porous Si micro-coldplates 337
12.3.2. Porous Si thermal conductivity 339
12.4. Crystalline membrane platforms 343
12.4.1. Strained germanium membranes 343
12.4.2. Thermal conductance measurements in Si and Ge membranes 350
12.4.3. Epitaxy-compatible thermal isolation platform 355
12.5. Summary of thermal conductance measurements 355
12.6. Acknowledgments. 358
12.7. Bibliography 358
PART 4. NEW MATERIALS, DEVICES AND TECHNOLOGIES FOR RF APPLICATIONS 365
PART 4. INTRODUCTION 367
Androula G. NASSIOPOULOU
CHAPTER 13. SUBSTRATE TECHNOLOGIES FOR SILICON-INTEGRATED RF AND MM-WAVE
PASSIVE DEVICES 373
Androula G. NASSIOPOULOU, Panagiotis SARAFIS, Jean-Pierre RASKIN, Hanza
ISSA, Philippe FERRARI
13.1. Introduction 373
13.2. High-resistivity Si substrate for RF 374
13.2.1. Losses along coplanar waveguide transmission lines 375
13.2.2. Crosstalk 380
13.2.3. Nonlinearities along CPW lines 384
13.3. Porous Si substrate technology 385
13.3.1. General properties of porous Si 386
13.3.2. Dielectric properties of porous Si 389
13.3.3. Broadband electrical characterization of CPWT Lines on porous Si
393
13.3.4. Inductors on porous Si397
13.3.5. Antennas on porous Si399
13.4. Comparison between HR Si and local porous Si substrate technologies
400
13.4.1. Comparison of similar CPW TLines on different substrates 400
13.4.2. Comparison of inductors on different RF substrates 404
13.5. Design of slow-wave CPWs and filters on porous silicon 404
13.5.1. Slow-wave CPW TLines on porous Si 405
13.5.2. Simulation results for S-CPW TLines 406
13.5.3. Stepped impedance low-pass filter on porous silicon 408
13.5.4. Simulation results for filters 409
13.6. Conclusion 411
13.7. Acknowledgments 411
13.8. Bibliography 411
CHAPTER 14. METAL NANOLINES AND ANTENNAS FOR RF AND MM-WAVE APPLICATIONS
419
Philippe BENECH, Chuan-Lun HSU, Gustavo ARDILA, Panagiotis SARAFIS and
Androula G. NASSIOPOULOU
14.1. Introduction 419
14.2. Metal nanowires (nanolines) 420
14.2.1. General properties 420
14.2.2. Transmission nanolines in microstrip configuration:
characterization and modeling 426
14.2.3. Transmission nanolines in CPW configuration: fabrication,
characterization and modeling 430
14.2.4. Characterization up to 200 GHz 440
14.3. Antennas 441
14.3.1. On-chip antennas: general 441
14.3.2. On-chip antenna characterization method 443
14.3.3. Measurement results 444
14.3.4. Discussion on antenna results 451
14.4. Conclusion 451
14.5. Acknowledgments 452
14.6. Bibliography 452
CHAPTER 15. NANOSTRUCTURED MAGNETIC MATERIALS FOR HIGH-FREQUENCY
APPLICATIONS 457
Saibal ROY, Jeffrey GODSELL and Tuhin MAITY
15.1. Introduction 457
15.2. Power conversion and integration 457
15.3. Materials and integration 459
15.4. Controlling the magnetic properties 463
15.5. Magnetic properties of nanocomposite materials 467
15.6. Magnetic properties of nanomodulated continuous films 470
15.7. Conclusion 478
15.8. Bibliography 479
LIST OF AUTHORS 485
INDEX 493
GENERAL INTRODUCTION xv
Francis BALESTRA
PART 1. SILION NANOWIRE BIOCHEMICAL SENSORS 1
PART 1. INTRODUCTION 3
Per-Erik HELLSTRÖM and Mikael ÖSTLING
CHAPTER 1. FABRICATION OF NANOWIRES 5
Jens BOLTEN, Per-Erik HELLSTRÖM, Mikael ÖSTLING, Céline TERNON and Pauline
SERRE
1.1. Introduction 5
1.2. Silicon nanowire fabrication with electron beam lithography 6
1.2.1. Key requirements 6
1.2.2. Why electron beam lithography? 7
1.2.3. Lithographic requirements 8
1.2.4. Tools, resist materials and development processes 9
1.2.5. Exposure strategies and proximity effect correction 10
1.2.6. Technology limitations and how to circumvent them 11
1.3. Silicon nanowire fabrication with sidewall transfer lithography 14
1.4. Si nanonet fabrication 17
1.4.1. Si NWs fabrication 18
1.4.2. Si nanonet assembling 19
1.4.3. Si nanonet morphology and properties 19
1.5. Acknowledgments 21
1.6. Bibliography 21
CHAPTER 2. FUNCTIONALIZATION OF SI-BASED NW FETs FOR DNA DETECTION 25
Valérie STAMBOULI, Céline TERNON, Pauline SERRE and Louis FRADETAL
2.1. Introduction 25
2.2. Functionalization process 27
2.3. Functionalization of Si nanonets for DNA biosensing 28
2.3.1. Detection of DNA hybridization on the Si nanonet by fluorescence
microscopy 31
2.3.2. Preliminary electrical characterizations of NW networks 33
2.4. Functionalization of SiC nanowire-based sensor for electrical DNA
biosensing35
2.4.1. SiC nanowire-based sensor functionalization process 35
2.4.2. DNA electrical detection from SiC nanowire-based sensor 38
2.5. Acknowledgments 39
2.6. Bibliography 40
CHAPTER 3. SENSITIVITY OF SILICON NANOWIRE BIOCHEMICAL SENSORS 43
Pierpaolo PALESTRI, Mireille MOUIS, Aryan AFZALIAN, Luca SELMI, Federico
PITTINO, Denis FLANDRE and Gérard GHIBAUDO
3.1. Introduction 43
3.1.1. Definitions 43
3.1.2. Main parameters affecting the sensitivity 47
3.2. Sensitivity and noise 47
3.3. Modeling the sensitivity of Si NW biosensors 50
3.3.1. Modeling the electrolyte 52
3.4. Sensitivity of random arrays of 1D nanostructures 54
3.4.1. Electrical characterization 55
3.4.2. Low-frequency noise characterization 56
3.4.3. Simulation of electron conduction in random networks of 1D
nanostructures 56
3.4.4. Discussion 59
3.5. Conclusions 59
3.6. Acknowledgments 60
3.7. Bibliography 60
CHAPTER 4. INTEGRATION OF SILICON NANOWIRES WITH CMOS 65
Per-Erik HELLSTRÖM, Ganesh JAYAKUMAR and Mikael ÖSTLING
4.1. Introduction 65
4.2. Overview of CMOS process technology 66
4.3. Integration of silicon nanowire after BEOL 66
4.4. Integration of silicon nanowires in FEOL 67
4.5. Sensor architecture design 69
4.6. Conclusions 71
4.7. Bibliography 72
CHAPTER 5. PORTABLE, INTEGRATED LOCK-IN-AMPLIFIER-BASED SYSTEM FOR
REAL-TIME IMPEDIMETRIC MEASUREMENTS ON NANOWIRES BIOSENSORS 73
Michele ROSSI and Marco TARTAGNI
5.1. Introduction 73
5.2. Portable stand-alone system 74
5.3. Integrated impedimetric interface 76
5.4. Impedimetric measurements on nanowire sensors 78
5.5. Bibliography 81
PART 2. NEW MATERIALS, DEVICES AND TECHNOLOGIES FOR ENERGY HARVESTING 83
PART 2. INTRODUCTION 85
Enrico SANGIORGI
CHAPTER 6. VIBRATIONAL ENERGY HARVESTING 89
Luca LARCHER, Saibal ROY, Dhiman MALLICK, Pranay PODDER, Massimo DE
VITTORIO, Teresa TODARO, Francesco GUIDO, Alessandro BERTACCHINI, Ronan
HINCHET, Julien KERAUDY and Gustavo ARDILA
6.1. Introduction 89
6.2. Piezoelectric energy transducer 91
6.2.1. Introduction 91
6.2.2. State-of-the-art devices and materials 92
6.2.3. MEMS piezoelectric vibration energy harvesting transducers 95
6.2.4. RMEMS prototypes characterization and discussions of experimental
results 102
6.2.5. Near field characterization techniques 104
6.2.6. Dedicated electro-mechanical models for piezoelectric transducer
design 106
6.3. Electromagnetic energy transducers 109
6.3.1. Introduction 109
6.3.2. State-of-the-art devices and materials 109
6.3.3. Vibration energy harvester exploiting both the piezoelectric and
electromagnetic effect 122
6.3.4. Device design 125
6.4. Bibliography 128
CHAPTER 7. THERMAL ENERGY HARVESTING 135
Mireille MOUIS, Emigdio CHÁVEZ-ÁNGEL, Clivia SOTOMAYOR-TORRES, Francesc
ALZINA, Marius V. COSTACHE, Androula G. NASSIOPOULOU, Katerina VALALAKI,
Emmanouel HOURDAKIS, Sergio O. VALENZUELA, Bernard VIALA, Dmitry ZAKHAROV,
Andrey SHCHEPETOV and Jouni AHOPELTO
7.1. Introduction 135
7.1.1. Basics of thermoelectric conversion 136
7.1.2. Strategies to increase ZT 137
7.1.3. Heavy-metal-free TE generation 140
7.1.4. Alternatives to TE harvesting for self-powered solid-state
microsystems 141
7.2. Thermal transport at nanoscale 142
7.2.1. Brief review of nanoscale thermal conductivity 143
7.2.2. The effect of phonon confinement 146
7.2.3. Fabrication of ultrathin free-standing silicon membranes 153
7.2.4. Advanced methods of characterizing phonon dispersion, lifetimes and
thermal conductivity 156
7.3. Porous silicon for thermal insulation on silicon wafers 172
7.3.1. Introduction 172
7.3.2. Thermal conductivity of nanostructured porous Si 172
7.3.3. Thermal isolation using thick porous Si layers 176
7.3.4. Thermoelectric generator using porous Si thermal isolation 177
7.4. Spin dependent thermoelectric effects 185
7.4.1. Physical principle and interest for thermal energy harvesting 186
7.4.2. Demonstration of the magnon drag effect 188
7.5. Composites of thermal shape memory alloy and piezoelectric materials
192
7.5.1. Introduction 192
7.5.2. Physical principle and interest for thermal energy harvesting 193
7.5.3. Novelty and realizations 194
7.5.4. Theoretical considerations 195
7.5.5. Examples of use 196
7.5.6. Summary of composite harvesting by the combination of SMA and
piezoelectric materials 204
7.6. Conclusions 204
7.7. Bibliography 205
CHAPTER 8. NANOWIRE BASED SOLAR CELLS 221
Mauro ZANUCCOLI, Anne KAMINSKI-CACHOPO, Jérôme MICHALLON, Vincent CONSONNI,
Igar SEMENIKHIN, Mehdi DAANOUNE, Frédérique DUCROQUET, David KOHEN,
Christine MORIN and Claudio FIEGNA
8.1 Introduction 221
8.2. Design of NW-based solar cells 223
8.2.1. Geometrical optimization of NW-based solar cells by numerical
simulations 223
8.2.2. TCAD simulation of NW-based solar cells 230
8.3. Fabrication and opto-electrical characterization of NW-based solar
cells 235
8.3.1. Elaboration of NW-based solar cells 235
8.3.2. Opto-electrical characterization of NW-based solar cells 236
8.4 Conclusion 243
8.5 Acknowledgments 243
8.6 Bibliography 243
CHAPTER 9. SMART ENERGY MANAGEMENT AND CONVERSION 249
Wensi WANG, James F. ROHAN, Ningning WANG, Mike HAYES, Aldo ROMANI, Enrico
MACRELLI, Michele DINI, Matteo FILIPPI, Marco TARTAGNI and Denis FLANDRE
9.1. Introduction 249
9.2. Power management solutions for energy harvesting devices 251
9.2.1. Ultra-low voltage thermoelectric energy harvesting 251
9.2.2. Sub-1mW photovoltaic energy harvesting 256
9.2.3. Piezoelectric and micro-electromagnetic energy harvesting 260
9.2.4. DC/DC power management for future micro-generator 262
9.3. Sub-mW energy storage solutions 266
9.4. Conclusions 270
9.5. Bibliography 271
PART 3. ON-CHIP ELECTRONIC COOLING 277
CHAPTER 10. TUNNEL JUNCTION ELECTRONIC COOLERS 279
Martin PREST, James RICHARDSON-BULLOCK, Terry WHALL, Evan PARKER and David
LEADLEY
10.1. Introduction and motivation 279
10.1.1. Existing cryogenic technology 280
10.2. Tunneling junctions as coolers 281
10.2.1. The NIS junction 281
10.2.2. Cooling power 284
10.2.3. Thermometry 286
10.2.4. The superconductor-insulator-normal metal-insulator-superconductor
(SINIS) structure 287
10.2.5. Double junction superconductor-silicon-superconductor (SSmS) cooler
288
10.3. Limitations to cooling 289
10.3.1. States within the superconductor gap 290
10.3.2. Joule heating 291
10.3.3. Series resistance 291
10.3.4. Quasi-particle-related heating 293
10.3.5. Andreev reflection 295
10.4. Heavy fermion-based coolers 297
10.5. Summary 299
10.6. Bibliography 300
CHAPTER 11. SILICON-BASED COOLING ELEMENTS 303
David LEADLEY, Martin PREST, Jouni AHOPELTO, Tom BRIEN, David GUNNARSSON,
Phil MAUSKOPF, Juha MUHONEN, Maksym MYRONOV, Hung NGUYEN, Evan PARKER, Mika
PRUNNILA, James RICHARDSON-BULLOCK, Vishal SHAH, Terry WHALL and Qing-Tai
ZHAO
11.1. Introduction to semiconductor-superconductor tunnel junction
coolers 303
11.2. Silicon-based Schottky barrier junctions 304
11.3. Carrier-phonon coupling in strained silicon 308
11.3.1. Measurement of electron-phonon coupling constant 312
11.4. Strained silicon Schottky barrier mK coolers 315
11.5. Silicon mK coolers with an oxide barrier [GUN 13] 318
11.5.1. Reduction of sub-gap leakage 318
11.5.2. Effects of strain 319
11.6. The silicon cold electron bolometer 321
11.7. Integration of detector and electronics 324
11.8. Summary and future prospects 325
11.9. Acknowledgments 327
11.10 Bibliography 327
CHAPTER 12. THERMAL ISOLATION THROUGH NANOSTRUCTURING. 331
David LEADLEY, Vishal SHAH, Jouni AHOPELTO, Francesc ALZINA, Emigdio
CHÁVEZ-ÁNGEL, Juha MUHONEN, Maksym MYRONOV, Androula G. NASSIOPOULOU, Hung
NGUYEN, Evan PARKER, Jukka PEKOLA, Martin PREST, Mika PRUNNILA, Juan
Sebastian REPARAZ, Andrey SHCHEPETOV, Clivia SOTOMAYOR-TORRES, Katerina
VALALAKI and Terry WHALL
12.1. Introduction 331
12.2. Lattice cooling by physical nanostructuring 331
12.3. Porous Si membranes as cryogenic thermal isolation platforms 337
12.3.1. Porous Si micro-coldplates 337
12.3.2. Porous Si thermal conductivity 339
12.4. Crystalline membrane platforms 343
12.4.1. Strained germanium membranes 343
12.4.2. Thermal conductance measurements in Si and Ge membranes 350
12.4.3. Epitaxy-compatible thermal isolation platform 355
12.5. Summary of thermal conductance measurements 355
12.6. Acknowledgments. 358
12.7. Bibliography 358
PART 4. NEW MATERIALS, DEVICES AND TECHNOLOGIES FOR RF APPLICATIONS 365
PART 4. INTRODUCTION 367
Androula G. NASSIOPOULOU
CHAPTER 13. SUBSTRATE TECHNOLOGIES FOR SILICON-INTEGRATED RF AND MM-WAVE
PASSIVE DEVICES 373
Androula G. NASSIOPOULOU, Panagiotis SARAFIS, Jean-Pierre RASKIN, Hanza
ISSA, Philippe FERRARI
13.1. Introduction 373
13.2. High-resistivity Si substrate for RF 374
13.2.1. Losses along coplanar waveguide transmission lines 375
13.2.2. Crosstalk 380
13.2.3. Nonlinearities along CPW lines 384
13.3. Porous Si substrate technology 385
13.3.1. General properties of porous Si 386
13.3.2. Dielectric properties of porous Si 389
13.3.3. Broadband electrical characterization of CPWT Lines on porous Si
393
13.3.4. Inductors on porous Si397
13.3.5. Antennas on porous Si399
13.4. Comparison between HR Si and local porous Si substrate technologies
400
13.4.1. Comparison of similar CPW TLines on different substrates 400
13.4.2. Comparison of inductors on different RF substrates 404
13.5. Design of slow-wave CPWs and filters on porous silicon 404
13.5.1. Slow-wave CPW TLines on porous Si 405
13.5.2. Simulation results for S-CPW TLines 406
13.5.3. Stepped impedance low-pass filter on porous silicon 408
13.5.4. Simulation results for filters 409
13.6. Conclusion 411
13.7. Acknowledgments 411
13.8. Bibliography 411
CHAPTER 14. METAL NANOLINES AND ANTENNAS FOR RF AND MM-WAVE APPLICATIONS
419
Philippe BENECH, Chuan-Lun HSU, Gustavo ARDILA, Panagiotis SARAFIS and
Androula G. NASSIOPOULOU
14.1. Introduction 419
14.2. Metal nanowires (nanolines) 420
14.2.1. General properties 420
14.2.2. Transmission nanolines in microstrip configuration:
characterization and modeling 426
14.2.3. Transmission nanolines in CPW configuration: fabrication,
characterization and modeling 430
14.2.4. Characterization up to 200 GHz 440
14.3. Antennas 441
14.3.1. On-chip antennas: general 441
14.3.2. On-chip antenna characterization method 443
14.3.3. Measurement results 444
14.3.4. Discussion on antenna results 451
14.4. Conclusion 451
14.5. Acknowledgments 452
14.6. Bibliography 452
CHAPTER 15. NANOSTRUCTURED MAGNETIC MATERIALS FOR HIGH-FREQUENCY
APPLICATIONS 457
Saibal ROY, Jeffrey GODSELL and Tuhin MAITY
15.1. Introduction 457
15.2. Power conversion and integration 457
15.3. Materials and integration 459
15.4. Controlling the magnetic properties 463
15.5. Magnetic properties of nanocomposite materials 467
15.6. Magnetic properties of nanomodulated continuous films 470
15.7. Conclusion 478
15.8. Bibliography 479
LIST OF AUTHORS 485
INDEX 493