Condensed matter exhibits a rich variety of phases. Of these, the crystalline state has, until recently, received most attention. This is not surprising, given the geometric regularity of crystals. At the other extreme one has amorphous materials. In between there are the various types of liquid crystals, the recently discovered quasicrystals, and so on. While the absence of the high degree of regularity that characterizes the crystalline phase is certainly a problem, these noncrystalline states have nevertheless been receiving some attention over the years. However, it is only during the last…mehr
Condensed matter exhibits a rich variety of phases. Of these, the crystalline state has, until recently, received most attention. This is not surprising, given the geometric regularity of crystals. At the other extreme one has amorphous materials. In between there are the various types of liquid crystals, the recently discovered quasicrystals, and so on. While the absence of the high degree of regularity that characterizes the crystalline phase is certainly a problem, these noncrystalline states have nevertheless been receiving some attention over the years. However, it is only during the last few years that something like a uni fied view of all these phases has begun to emerge, through an application of various sophisticated concepts. Geometry and symmetry (and unusual realiza tions of the latter) provide a unifying thread in this new and emerging perspec tive. This book is an attempt to capture the flavour of some of these recent de velopments. The approach is substantially descriptive, being intended to be accessible not only to experimental physicists, but also to chemists, materials scientists, metallurgists and ceramicists, whose work borders on physics. The prerequisites for a study of this book are a familiarity with basic solid-state physics and, in places, the elements of group theory and statistical mechanics. A few special topics are included at the end to aid those who wish to pur sure further the subject matter treated here.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
1. Introduction.- 2. Variety in Structures.- 2.1 Crystals.- 2.2 Incommensurate and Long-Period Structures.- 2.3 Quasicrystals.- 2.4 Liquid Crystals.- 2.5 Glass.- 2.6 Systems with Quasi Long-Range Order.- 2.7 Overview.- 3. Order Out of Disorder.- 3.1 Landau Theory.- 3.2 Conjugate Field.- 3.3 Symmetry Breaking: Further Aspects.- 3.4 Goldstone Modes.- 3.5 Generalized Rigidity.- 3.6 Quasi LRO.- 3.7 Overview.- 4. Defects and Topology.- 4.1 Basic Strategy.- 4.2 Some Basic Concepts of Topology.- 4.3 Continuous Groups and Topological Spaces.- 4.4 The First or the Fundamental Homotopy Group and Defects.- 4.5 Some Examples.- 4.6 Stability.- 4.7 Combination of Defects.- 4.8 Other Homotopy Groups.- 4.9 Ordered Media with Broken Translational Symmetry.- 4.10 Summary.- 5. Structures by Projection.- 5.1 Concerning Tilings.- 5.2 Regular Polytopes.- 5.3 Amorphous Structures from Mappings of Polytopes.- 5.4 Line Defects in Amorphous Structures.- 5.5 Disclinations and Frank-Kasper Chains.- 5.6 Mapping from S3 to E3.- 5.7 Defects and Star Mapping.- 5.8 Mapping by Disclination Procedure.- 5.9 Decoration.- 5.10 Defects in the CRN.- 5.11 Amorphous Structures by Projection of Hyperbolic Tilings.- 5.12 Polymers and Polytopes.- 5.13 Quasicrystals by the Projection Method.- 5.14 Generalization.- 5.15 Some Comments on the Projection Method.- 5.16 Miller Indices for Quasicrystals.- 5.17 Diffraction Patterns of Quasicrystals.- 5.18 Incommensurate Crystals.- 5.19 Summary.- 6. Beyond Simple Geometry.- 6.1 Some Basics.- 6.2 Landau Theory and Ordered Atomic Structures.- 6.3 Orientational Ordering.- 6.4 Orientational Order Versus Translational Order.- 6.5 Landau Theory and Amorphous Structures.- 6.6 Landau Theory and Liquid Crystals.- 6.7 Hydrodynamics.- 6.8 Fluctuations and the Landau Theory.- 6.9 Frustration and the Disruption of Order.- 6.10 Defect-Dominated Structures.- 6.11 Overview.- 7. Tilings in One Dimension.- 7.1 Structures and Competing Periodic Potentials.- 7.2 Portrait of the Penrose Chain.- 7.3 Spatial Chaos and Amorphous Structures.- 7.4 Summary.- 8. Ergodicity Breaking.- 8.1 Basic Ideas.- 8.2 Time Scales and Broken Ergodicity.- 8.3 Broken Ergodicity and Symmetry Breaking.- 8.4 The Spin Glass.- 8.5 The Case of Glass.- 8.6 Generalization.- 9. Symmetry Breaking - A Second Look.- 9.1 Orbits and Strata in Crystal Physics.- 9.2 Symmetry Breaking and Strata.- 9.3 Isotropy Subgroups of the Euclidean Group E(3).- 9.4 More About Extensions to E(3).- 9.5 Patterns in Nonequilibrium Systems.- 9.6 Cylindrical Crystallography.- Appendix: Special Topics.- A. Hydrodynamics.- A.1 Hydrodynamic Equations.- A.2 Ordered Media with Continuous Broken Symmetries.- A.2.1 Hydrodynamics of a Solid.- A.3 The Poisson Bracket Method in Hydrodynamics.- A.4 Summary.- B. Curved Space and Parallel Transport of Vectors.- B.1 Parallel Transport of Vectors.- B.2 The Covariant Derivative.- B.3 The Curvature.- B.4 The Torsion.- B.5 Mapping from Curved Space to Flat Space.- D. Some Aspects of Group Theory.- D.1 Group Morphisms.- D.2 Transformation Group, Group Action and Orbits.- E. A Brief Introduction to Homotopy and Lie Groups.- E.1 Topology.- E.2 Elements of Homotopy Theory.- E.2.1 The First Homotopy Group.- E.2.2 Higher Homotopy Groups.- E.3 Continuous Groups and Lie Groups.- F. Local Gauge Invariance and Gauge Theories.- F.1 Internal Connection.- F.2 Gauge Field Theory.- F.3 U(1) Gauge Symmetry.- F.4 Non-Abelian Gauge Groups.- F.5 Gauge Theory of Dislocations and Disclinations.- References.- Author Index.
1. Introduction.- 2. Variety in Structures.- 2.1 Crystals.- 2.2 Incommensurate and Long-Period Structures.- 2.3 Quasicrystals.- 2.4 Liquid Crystals.- 2.5 Glass.- 2.6 Systems with Quasi Long-Range Order.- 2.7 Overview.- 3. Order Out of Disorder.- 3.1 Landau Theory.- 3.2 Conjugate Field.- 3.3 Symmetry Breaking: Further Aspects.- 3.4 Goldstone Modes.- 3.5 Generalized Rigidity.- 3.6 Quasi LRO.- 3.7 Overview.- 4. Defects and Topology.- 4.1 Basic Strategy.- 4.2 Some Basic Concepts of Topology.- 4.3 Continuous Groups and Topological Spaces.- 4.4 The First or the Fundamental Homotopy Group and Defects.- 4.5 Some Examples.- 4.6 Stability.- 4.7 Combination of Defects.- 4.8 Other Homotopy Groups.- 4.9 Ordered Media with Broken Translational Symmetry.- 4.10 Summary.- 5. Structures by Projection.- 5.1 Concerning Tilings.- 5.2 Regular Polytopes.- 5.3 Amorphous Structures from Mappings of Polytopes.- 5.4 Line Defects in Amorphous Structures.- 5.5 Disclinations and Frank-Kasper Chains.- 5.6 Mapping from S3 to E3.- 5.7 Defects and Star Mapping.- 5.8 Mapping by Disclination Procedure.- 5.9 Decoration.- 5.10 Defects in the CRN.- 5.11 Amorphous Structures by Projection of Hyperbolic Tilings.- 5.12 Polymers and Polytopes.- 5.13 Quasicrystals by the Projection Method.- 5.14 Generalization.- 5.15 Some Comments on the Projection Method.- 5.16 Miller Indices for Quasicrystals.- 5.17 Diffraction Patterns of Quasicrystals.- 5.18 Incommensurate Crystals.- 5.19 Summary.- 6. Beyond Simple Geometry.- 6.1 Some Basics.- 6.2 Landau Theory and Ordered Atomic Structures.- 6.3 Orientational Ordering.- 6.4 Orientational Order Versus Translational Order.- 6.5 Landau Theory and Amorphous Structures.- 6.6 Landau Theory and Liquid Crystals.- 6.7 Hydrodynamics.- 6.8 Fluctuations and the Landau Theory.- 6.9 Frustration and the Disruption of Order.- 6.10 Defect-Dominated Structures.- 6.11 Overview.- 7. Tilings in One Dimension.- 7.1 Structures and Competing Periodic Potentials.- 7.2 Portrait of the Penrose Chain.- 7.3 Spatial Chaos and Amorphous Structures.- 7.4 Summary.- 8. Ergodicity Breaking.- 8.1 Basic Ideas.- 8.2 Time Scales and Broken Ergodicity.- 8.3 Broken Ergodicity and Symmetry Breaking.- 8.4 The Spin Glass.- 8.5 The Case of Glass.- 8.6 Generalization.- 9. Symmetry Breaking - A Second Look.- 9.1 Orbits and Strata in Crystal Physics.- 9.2 Symmetry Breaking and Strata.- 9.3 Isotropy Subgroups of the Euclidean Group E(3).- 9.4 More About Extensions to E(3).- 9.5 Patterns in Nonequilibrium Systems.- 9.6 Cylindrical Crystallography.- Appendix: Special Topics.- A. Hydrodynamics.- A.1 Hydrodynamic Equations.- A.2 Ordered Media with Continuous Broken Symmetries.- A.2.1 Hydrodynamics of a Solid.- A.3 The Poisson Bracket Method in Hydrodynamics.- A.4 Summary.- B. Curved Space and Parallel Transport of Vectors.- B.1 Parallel Transport of Vectors.- B.2 The Covariant Derivative.- B.3 The Curvature.- B.4 The Torsion.- B.5 Mapping from Curved Space to Flat Space.- D. Some Aspects of Group Theory.- D.1 Group Morphisms.- D.2 Transformation Group, Group Action and Orbits.- E. A Brief Introduction to Homotopy and Lie Groups.- E.1 Topology.- E.2 Elements of Homotopy Theory.- E.2.1 The First Homotopy Group.- E.2.2 Higher Homotopy Groups.- E.3 Continuous Groups and Lie Groups.- F. Local Gauge Invariance and Gauge Theories.- F.1 Internal Connection.- F.2 Gauge Field Theory.- F.3 U(1) Gauge Symmetry.- F.4 Non-Abelian Gauge Groups.- F.5 Gauge Theory of Dislocations and Disclinations.- References.- Author Index.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826