Beyond the Worst-Case Analysis of Algorithms
Herausgeber: Roughgarden, Tim
Beyond the Worst-Case Analysis of Algorithms
Herausgeber: Roughgarden, Tim
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Understanding when and why algorithms work is a fundamental challenge. For problems ranging from clustering to linear programming to neural networks there are significant gaps between empirical performance and prediction based on traditional worst-case analysis. The book introduces exciting new methods for assessing algorithm performance.
Andere Kunden interessierten sich auch für
- Dashun Wang (Illinois Northwestern University)The Science of Science27,99 €
- Donald MacKenzieTrading at the Speed of Light28,99 €
- Jan-Willem MiddelburgThe Enterprise Big Data Framework49,99 €
- Algorithmic Life123,99 €
- Subrata Saha (Techno India Hoogly)Data Structures and Algorithms using Python100,99 €
- Jeff Edmonds (Toronto York University)How to Think about Algorithms154,99 €
- Jeff Edmonds (Toronto York University)How to Think about Algorithms32,99 €
-
-
-
Understanding when and why algorithms work is a fundamental challenge. For problems ranging from clustering to linear programming to neural networks there are significant gaps between empirical performance and prediction based on traditional worst-case analysis. The book introduces exciting new methods for assessing algorithm performance.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 706
- Erscheinungstermin: 14. Januar 2021
- Englisch
- Abmessung: 260mm x 183mm x 42mm
- Gewicht: 1496g
- ISBN-13: 9781108494311
- ISBN-10: 1108494315
- Artikelnr.: 60021364
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Verlag: Cambridge University Press
- Seitenzahl: 706
- Erscheinungstermin: 14. Januar 2021
- Englisch
- Abmessung: 260mm x 183mm x 42mm
- Gewicht: 1496g
- ISBN-13: 9781108494311
- ISBN-10: 1108494315
- Artikelnr.: 60021364
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
Forward
Preface
1. Introduction Tim Roughgarden
Part I. Refinements of Worst-Case Analysis: 2. Parameterized algorithms Fedor Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi
3. From adaptive analysis to instance optimality Jérémy Barbay
4. Resource augmentation Tim Roughgarden
Part II. Deterministic Models of Data: 5. Perturbation resilience Konstantin Makarychev and Yury Makarychev
6. Approximation stability and proxy objectives Avrim Blum
7. Sparse recovery Eric Price
Part III. Semi-Random Models: 8. Distributional analysis Tim Roughgarden
9. Introduction to semi-random models Uriel Feige
10. Semi-random stochastic block models Ankur Moitra
11. Random-order models Anupam Gupta and Sahil Singla
12. Self-improving algorithms C. Seshadhri
Part IV. Smoothed Analysis: 13. Smoothed analysis of local search Bodo Manthey
14. Smoothed analysis of the simplex method Daniel Dadush and Sophie Huiberts
15. Smoothed analysis of Pareto curves in multiobjective optimization Heiko Röglin
Part V. Applications in Machine Learning and Statistics: 16. Noise in classification Maria-Florina Balcan and Nika Haghtalab
17. Robust high-dimensional statistics Ilias Diakonikolas and Daniel Kane
18. Nearest-neighbor classification and search Sanjoy Dasgupta and Samory Kpotufe
19. Efficient tensor decomposition Aravindan Vijayaraghavan
20. Topic models and nonnegative matrix factorization Rong Ge and Ankur Moitra
21. Why do local methods solve nonconvex problems? Tengyu Ma
22. Generalization in overparameterized models Moritz Hardt
23. Instance-optimal distribution testing and learning Gregory Valiant and Paul Valiant
Part VI. Further Applications: 24. Beyond competitive analysis Anna R. Karlin and Elias Koutsoupias
25. On the unreasonable effectiveness of satisfiability solvers Vijay Ganesh and Moshe Vardi
26. When simple hash functions suffice Kai-Min Chung, Michael Mitzenmacher and Salil Vadhan
27. Prior-independent auctions Inbal Talgam-Cohen
28. Distribution-free models of social networks Tim Roughgarden and C. Seshadhri
29. Data-driven algorithm design Maria-Florina Balcan
30. Algorithms with predictions Michael Mitzenmacher and Sergei Vassilvitskii.
Preface
1. Introduction Tim Roughgarden
Part I. Refinements of Worst-Case Analysis: 2. Parameterized algorithms Fedor Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi
3. From adaptive analysis to instance optimality Jérémy Barbay
4. Resource augmentation Tim Roughgarden
Part II. Deterministic Models of Data: 5. Perturbation resilience Konstantin Makarychev and Yury Makarychev
6. Approximation stability and proxy objectives Avrim Blum
7. Sparse recovery Eric Price
Part III. Semi-Random Models: 8. Distributional analysis Tim Roughgarden
9. Introduction to semi-random models Uriel Feige
10. Semi-random stochastic block models Ankur Moitra
11. Random-order models Anupam Gupta and Sahil Singla
12. Self-improving algorithms C. Seshadhri
Part IV. Smoothed Analysis: 13. Smoothed analysis of local search Bodo Manthey
14. Smoothed analysis of the simplex method Daniel Dadush and Sophie Huiberts
15. Smoothed analysis of Pareto curves in multiobjective optimization Heiko Röglin
Part V. Applications in Machine Learning and Statistics: 16. Noise in classification Maria-Florina Balcan and Nika Haghtalab
17. Robust high-dimensional statistics Ilias Diakonikolas and Daniel Kane
18. Nearest-neighbor classification and search Sanjoy Dasgupta and Samory Kpotufe
19. Efficient tensor decomposition Aravindan Vijayaraghavan
20. Topic models and nonnegative matrix factorization Rong Ge and Ankur Moitra
21. Why do local methods solve nonconvex problems? Tengyu Ma
22. Generalization in overparameterized models Moritz Hardt
23. Instance-optimal distribution testing and learning Gregory Valiant and Paul Valiant
Part VI. Further Applications: 24. Beyond competitive analysis Anna R. Karlin and Elias Koutsoupias
25. On the unreasonable effectiveness of satisfiability solvers Vijay Ganesh and Moshe Vardi
26. When simple hash functions suffice Kai-Min Chung, Michael Mitzenmacher and Salil Vadhan
27. Prior-independent auctions Inbal Talgam-Cohen
28. Distribution-free models of social networks Tim Roughgarden and C. Seshadhri
29. Data-driven algorithm design Maria-Florina Balcan
30. Algorithms with predictions Michael Mitzenmacher and Sergei Vassilvitskii.
Forward
Preface
1. Introduction Tim Roughgarden
Part I. Refinements of Worst-Case Analysis: 2. Parameterized algorithms Fedor Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi
3. From adaptive analysis to instance optimality Jérémy Barbay
4. Resource augmentation Tim Roughgarden
Part II. Deterministic Models of Data: 5. Perturbation resilience Konstantin Makarychev and Yury Makarychev
6. Approximation stability and proxy objectives Avrim Blum
7. Sparse recovery Eric Price
Part III. Semi-Random Models: 8. Distributional analysis Tim Roughgarden
9. Introduction to semi-random models Uriel Feige
10. Semi-random stochastic block models Ankur Moitra
11. Random-order models Anupam Gupta and Sahil Singla
12. Self-improving algorithms C. Seshadhri
Part IV. Smoothed Analysis: 13. Smoothed analysis of local search Bodo Manthey
14. Smoothed analysis of the simplex method Daniel Dadush and Sophie Huiberts
15. Smoothed analysis of Pareto curves in multiobjective optimization Heiko Röglin
Part V. Applications in Machine Learning and Statistics: 16. Noise in classification Maria-Florina Balcan and Nika Haghtalab
17. Robust high-dimensional statistics Ilias Diakonikolas and Daniel Kane
18. Nearest-neighbor classification and search Sanjoy Dasgupta and Samory Kpotufe
19. Efficient tensor decomposition Aravindan Vijayaraghavan
20. Topic models and nonnegative matrix factorization Rong Ge and Ankur Moitra
21. Why do local methods solve nonconvex problems? Tengyu Ma
22. Generalization in overparameterized models Moritz Hardt
23. Instance-optimal distribution testing and learning Gregory Valiant and Paul Valiant
Part VI. Further Applications: 24. Beyond competitive analysis Anna R. Karlin and Elias Koutsoupias
25. On the unreasonable effectiveness of satisfiability solvers Vijay Ganesh and Moshe Vardi
26. When simple hash functions suffice Kai-Min Chung, Michael Mitzenmacher and Salil Vadhan
27. Prior-independent auctions Inbal Talgam-Cohen
28. Distribution-free models of social networks Tim Roughgarden and C. Seshadhri
29. Data-driven algorithm design Maria-Florina Balcan
30. Algorithms with predictions Michael Mitzenmacher and Sergei Vassilvitskii.
Preface
1. Introduction Tim Roughgarden
Part I. Refinements of Worst-Case Analysis: 2. Parameterized algorithms Fedor Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi
3. From adaptive analysis to instance optimality Jérémy Barbay
4. Resource augmentation Tim Roughgarden
Part II. Deterministic Models of Data: 5. Perturbation resilience Konstantin Makarychev and Yury Makarychev
6. Approximation stability and proxy objectives Avrim Blum
7. Sparse recovery Eric Price
Part III. Semi-Random Models: 8. Distributional analysis Tim Roughgarden
9. Introduction to semi-random models Uriel Feige
10. Semi-random stochastic block models Ankur Moitra
11. Random-order models Anupam Gupta and Sahil Singla
12. Self-improving algorithms C. Seshadhri
Part IV. Smoothed Analysis: 13. Smoothed analysis of local search Bodo Manthey
14. Smoothed analysis of the simplex method Daniel Dadush and Sophie Huiberts
15. Smoothed analysis of Pareto curves in multiobjective optimization Heiko Röglin
Part V. Applications in Machine Learning and Statistics: 16. Noise in classification Maria-Florina Balcan and Nika Haghtalab
17. Robust high-dimensional statistics Ilias Diakonikolas and Daniel Kane
18. Nearest-neighbor classification and search Sanjoy Dasgupta and Samory Kpotufe
19. Efficient tensor decomposition Aravindan Vijayaraghavan
20. Topic models and nonnegative matrix factorization Rong Ge and Ankur Moitra
21. Why do local methods solve nonconvex problems? Tengyu Ma
22. Generalization in overparameterized models Moritz Hardt
23. Instance-optimal distribution testing and learning Gregory Valiant and Paul Valiant
Part VI. Further Applications: 24. Beyond competitive analysis Anna R. Karlin and Elias Koutsoupias
25. On the unreasonable effectiveness of satisfiability solvers Vijay Ganesh and Moshe Vardi
26. When simple hash functions suffice Kai-Min Chung, Michael Mitzenmacher and Salil Vadhan
27. Prior-independent auctions Inbal Talgam-Cohen
28. Distribution-free models of social networks Tim Roughgarden and C. Seshadhri
29. Data-driven algorithm design Maria-Florina Balcan
30. Algorithms with predictions Michael Mitzenmacher and Sergei Vassilvitskii.