Masterarbeit aus dem Jahr 2014 im Fachbereich Werkstoffkunde, Note: 1,7, Universität des Saarlandes (Naturwissenschaftlich-Technische Fakultät III Chemie, Pharmazie, Bio- und Werkstoffwissenschaften der Universität des Saarlandes), Veranstaltung: Materialwissenschaften und Werkstofftechnik, Sprache: Deutsch, Abstract: Im Rahmen dieser Masterarbeit werden zylindrische Mikropillars in eine polykristalline Kupferprobe mittels FIB geschnitten. Die Pillars haben unterschiedliche Durchmesser und sind alle im gleichen Korn mit der (001) Orientierung parallel zur Oberflächennormalen lokalisiert. Sie werden in einem Nanoindenter mit einer konischen Spitze bei unterschiedlichen Temperaturen von 0°C bis 140°C gebogen. Im Anschluss daran wird der Einfluss von der Temperatur und der Dehngeschwindigkeit auf der Größeneffekt genau analysiert.
Alle Ergebnisse von den Biegeversuchen werden mit REM-Bildern der verformten Proben korreliert, um Mechanismen über den Einfluss der genannten Faktoren auf die mechanischen Eigenschaften wie E-Modul und Fließspannung beschreiben zu können.
Die Entwicklung von fortschrittlichen Materialien für High-End-Anwendungen wird durch kontinuierliche Fortschritte in der Synthese und Steuerung der Materialmikrostruktur auf Sub-Mikrometer und Nanometer-Skalen angetrieben.
Die mechanischen Eigenschaften von Materialien verändern sich stark, wenn die Probenabmessungen kleiner als einige Mikrometer sind. Die kleinen Strukturen bieten außerdem die Möglichkeit zum direkten Vergleich zwischen Modellierung und Experiment.
Die Experimente liefern Daten für die Validierung von Modellen und die Modelle einen Weg für neue physikalisch basierte Vorhersagen des Materialverhaltens. Früher wurden die meisten Materialien nur makroskopisch untersucht, um die Kennwerte der jeweiligen Eigenschaften zu bestimmen. Zugversuche können durchgeführt werden, um die Elastizität des Materials zu untersuchen oder es bieten sic
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Alle Ergebnisse von den Biegeversuchen werden mit REM-Bildern der verformten Proben korreliert, um Mechanismen über den Einfluss der genannten Faktoren auf die mechanischen Eigenschaften wie E-Modul und Fließspannung beschreiben zu können.
Die Entwicklung von fortschrittlichen Materialien für High-End-Anwendungen wird durch kontinuierliche Fortschritte in der Synthese und Steuerung der Materialmikrostruktur auf Sub-Mikrometer und Nanometer-Skalen angetrieben.
Die mechanischen Eigenschaften von Materialien verändern sich stark, wenn die Probenabmessungen kleiner als einige Mikrometer sind. Die kleinen Strukturen bieten außerdem die Möglichkeit zum direkten Vergleich zwischen Modellierung und Experiment.
Die Experimente liefern Daten für die Validierung von Modellen und die Modelle einen Weg für neue physikalisch basierte Vorhersagen des Materialverhaltens. Früher wurden die meisten Materialien nur makroskopisch untersucht, um die Kennwerte der jeweiligen Eigenschaften zu bestimmen. Zugversuche können durchgeführt werden, um die Elastizität des Materials zu untersuchen oder es bieten sic
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.