39,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
20 °P sammeln
  • Broschiertes Buch

Big Data Systems encompass massive challenges related to data diversity, storage mechanisms, and requirements of massive computational power. Further, capabilities of big data systems also vary with respect to type of problems. For instance, distributed memory systems are not recommended for iterative algorithms. Similarly, variations in big data systems also exist related to consistency and fault tolerance. The purpose of this book is to provide a detailed explanation of big data systems. The book covers various topics including Networking, Security, Privacy, Storage, Computation, Cloud…mehr

Produktbeschreibung
Big Data Systems encompass massive challenges related to data diversity, storage mechanisms, and requirements of massive computational power. Further, capabilities of big data systems also vary with respect to type of problems. For instance, distributed memory systems are not recommended for iterative algorithms. Similarly, variations in big data systems also exist related to consistency and fault tolerance. The purpose of this book is to provide a detailed explanation of big data systems. The book covers various topics including Networking, Security, Privacy, Storage, Computation, Cloud Computing, NoSQL and NewSQL systems, High Performance Computing, and Deep Learning. An illustrative and practical approach has been adopted in which theoretical topics have been aided by well-explained programming and illustrative examples.

Key Features:
Introduces concepts and evolution of Big Data technology.Illustrates examples for thorough understanding.Contains programming examples for hands on development.Explains a variety of topics including NoSQL Systems, NewSQL systems, Security, Privacy, Networking, Cloud, High Performance Computing, and Deep Learning.Exemplifies widely used big data technologies such as Hadoop and Spark.Includes discussion on case studies and open issues.Provides end of chapter questions for enhanced learning.
Autorenporträt
Jawwad A. Shamsi completed B.E. (Electrical Engineering) from NED University of Enginnering and Technology, Karachi in 1998. He completed his MS in Computer and Information Sciences from University of Michigan-Dearborn, MI, USA in 2002. In 2009, he completed his PhD. from Wayne State University, MI, USA. He has also worked as a Programmar Analyst in USA from 2000 to 2002. In 2009, he joined FAST- National Univesity of Computer and Emerging Sciences (NUCES), Karachi. He has served as the head of computer science department from 2012 to 2017. Currently, he is serving as a Professor of Computer Science and Director of the Karachi Campus. He also leads a research group - syslab (http://syslab.khi.nu.edu.pk). His research is focused on developing systems which can meet the growing needs of scalability, security, high performance, robustness, and agility. His research has been funded by different International and National agencies including NVIDIA and Higher Education Commission, Pakistan. Muhammad Ali Khojaye has more than decade of industrial experience ranging from the cloud-native side of things to distributed systems design, CI/CD, and infrastructure. His current technical interests revolve around big data, cloud, containers, and large scale systems design. He currently lives in the Glasgow suburbs with his wife and son. When he's not at work, Ali enjoys cycling, travelling, and spending time with family and friends.