68,90 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
0 °P sammeln
  • Broschiertes Buch

Die Superauflösung von Bildern und Videos ist in letzter Zeit ein wichtiger Forschungsschwerpunkt. Zu ihren Anwendungen gehören HDTV, Bildcodierung, Größenänderung von Bildern, Bildmanipulation, Fernerkundung, Gesichtserkennung, Astronomie und Überwachung. Ziel ist es, die Bild-/Videoauflösung durch Upsampling, Entfettung, Rauschunterdrückung, Deep Learning usw. zu erhöhen. Die Entwicklung verschiedener Theorien zur Bild-/Video-Superauflösung wird in diesem Buch untersucht, wobei der Schwerpunkt auf Deep Convolutional Networks-based Superresolution (DeepCNSR) liegt. Mehr als 30 hochmoderne…mehr

Produktbeschreibung
Die Superauflösung von Bildern und Videos ist in letzter Zeit ein wichtiger Forschungsschwerpunkt. Zu ihren Anwendungen gehören HDTV, Bildcodierung, Größenänderung von Bildern, Bildmanipulation, Fernerkundung, Gesichtserkennung, Astronomie und Überwachung. Ziel ist es, die Bild-/Videoauflösung durch Upsampling, Entfettung, Rauschunterdrückung, Deep Learning usw. zu erhöhen. Die Entwicklung verschiedener Theorien zur Bild-/Video-Superauflösung wird in diesem Buch untersucht, wobei der Schwerpunkt auf Deep Convolutional Networks-based Superresolution (DeepCNSR) liegt. Mehr als 30 hochmoderne Superauflösungs-CNNs (Convolutional Neural Networks) mit drei klassischen und drei kürzlich eingeführten anspruchsvollen Datensätzen zum Vergleich der Superauflösung von Einzelbildern wurden mit ihren Vor- und Nachteilen eingehend analysiert. Es wurde eine Taxonomie mit neun Kategorien für DeepCNSR-Netzwerke eingeführt, darunter lineare, residuale, mehrfach verzweigte, rekursive, progressive, aufmerksamkeitsbasierte und kontradiktorische Designs. Die Netzwerkkomplexität, der Speicherbedarf, die Modelleingabe und -ausgabe, die Lerndetails, die Art der Netzwerkverluste und wichtige architektonische Unterschiede (z. B. Tiefe, Skip-Verbindungen, Filter) der einzelnen Modelle wurden vergleichend untersucht.
Autorenporträt
Sangita Roy è professore associato presso il Dipartimento ECE del Narula Institute of Technology, India. Ha un'esperienza di insegnamento di oltre ventisei anni. È stata per due anni alla Bells Controls Limited (industria della strumentazione) e per due anni al West Bengal State Centre, IEI (Kolkata) come coordinatore tecnico.