Bio-Nanoparticles
Biosynthesis and Sustainable Biotechnological Implications
Herausgegeben von Singh, Om V.
Bio-Nanoparticles
Biosynthesis and Sustainable Biotechnological Implications
Herausgegeben von Singh, Om V.
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Nanoparticles are the building blocks for nanotechnology; they are better built, long lasting, cleaner, safer, and smarter products for use across industries, including communications, medicine, transportation, agriculture and other industries. Controlled size, shape, composition, crystallinity, and structure-dependent properties govern the unique properties of nanotechnology.
Bio-Nanoparticles: Biosynthesis and Sustainable Biotechnological Implications explores both the basics of and advancements in nanoparticle biosynthesis. The text introduces the reader to a variety of microorganisms…mehr
Andere Kunden interessierten sich auch für
- Om V. SinghExtremophiles202,99 €
- Uma LakshmipathyPrimary and Stem Cells155,99 €
- Soil Bioremediation209,99 €
- Microbial Bioreactors for Industrial Molecules218,99 €
- Bio-Pigmentation and Biotechnological Implementations246,99 €
- Jeremy W. DaleUnderstanding Microbes111,99 €
- Rising Contagious Diseases322,99 €
-
-
-
Nanoparticles are the building blocks for nanotechnology; they are better built, long lasting, cleaner, safer, and smarter products for use across industries, including communications, medicine, transportation, agriculture and other industries. Controlled size, shape, composition, crystallinity, and structure-dependent properties govern the unique properties of nanotechnology.
Bio-Nanoparticles: Biosynthesis and Sustainable Biotechnological Implications explores both the basics of and advancements in nanoparticle biosynthesis. The text introduces the reader to a variety of microorganisms able to synthesize nanoparticles, provides an overview of the methodologies applied to biosynthesize nanoparticles for medical and commercial use, and gives an overview of regulations governing their use.
Authored by leaders in the field, Bio-Nanoparticles: Biosynthesis and Sustainable Biotechnological Implications bridges the gap between biology and technology, and is an invaluable resource for students and researchers alike.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Bio-Nanoparticles: Biosynthesis and Sustainable Biotechnological Implications explores both the basics of and advancements in nanoparticle biosynthesis. The text introduces the reader to a variety of microorganisms able to synthesize nanoparticles, provides an overview of the methodologies applied to biosynthesize nanoparticles for medical and commercial use, and gives an overview of regulations governing their use.
Authored by leaders in the field, Bio-Nanoparticles: Biosynthesis and Sustainable Biotechnological Implications bridges the gap between biology and technology, and is an invaluable resource for students and researchers alike.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 384
- Erscheinungstermin: 22. Juni 2015
- Englisch
- Abmessung: 244mm x 173mm x 23mm
- Gewicht: 748g
- ISBN-13: 9781118677681
- ISBN-10: 1118677684
- Artikelnr.: 40550267
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 384
- Erscheinungstermin: 22. Juni 2015
- Englisch
- Abmessung: 244mm x 173mm x 23mm
- Gewicht: 748g
- ISBN-13: 9781118677681
- ISBN-10: 1118677684
- Artikelnr.: 40550267
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Om V. Singh, PhD, is an Associate Professor of Microbiology at the University of Pittsburgh, Bradford in Bradford, PA, USA.
List of Contributors xv
Introduction xvii
1 Diversity of Microbes in Synthesis of Metal Nanoparticles: Progress and
Limitations 1
Mahendra Rai, Irena Maliszewska, Avinash Ingle, Indarchand Gupta, and Alka
Yadav
1.1 Introduction 1
1.2 Synthesis of Nanoparticles by Bacteria 2
1.3 Synthesis of Nanoparticles by Fungi 9
1.4 Synthesis of Nanoparticles by Algae 12
1.5 Applications of Metal Nanoparticles 16
1.5.1 Nanoparticles as Catalyst 16
1.5.2 Nanoparticles as Bio?]membranes 17
1.5.3 Nanoparticles in Cancer Treatment 17
1.5.4 Nanoparticles in Drug Delivery 17
1.5.5 Nanoparticles for Detection and Destruction of Pesticides 17
1.5.6 Nanoparticles in Water Treatment 18
1.6 Limitations of Synthesis of Biogenic Nanoparticles 18
References 20
2 Role of Fungi Toward Synthesis of Nano?]Oxides 31
Rajesh Ramanathan and Vipul Bansal
2.1 Introduction 31
2.2 Fungus?]mediated Synthesis of Nanomaterials 34
2.2.1 Biosynthesis of Binary Nano?]oxides using Chemical Precursors 34
2.2.2 Biosynthesis of Complex Mixed?]metal Nano?]oxides using Chemical
Precursors 39
2.2.3 Biosynthesis of Nano?]oxides using Natural Precursors employing
Bioleaching Approach 42
2.2.4 Biosynthesis of nano?]oxides employing bio?]milling approach 44
2.3 Outlook 46
References 47
3 Microbial Molecular Mechanisms in Biosynthesis of Nanoparticles 53
Atmakuru Ramesh, Marimuthu Thiripura Sundari, and Perumal Elumalai
Thirugnanam
3.1 Introduction 53
3.2 Chemical Synthesis of Metal Nanoparticles 54
3.2.1 Brust-Schiffrin Synthesis 55
3.3 Green Synthesis 57
3.4 Biosynthesis of Nanoparticles 58
3.5 Mechanisms for Formation or Synthesis of Nanoparticles 61
3.5.1 Biomineralization using Magnetotactic Bacteria (MTB) 61
3.5.2 Reduction of Tellurite using Phototroph Rhodobacter capsulatus 62
3.5.3 Formation of AgNPs using Lactic Acid and Bacteria 62
3.5.4 Microfluidic Cellular Bioreactor for the Generation of Nanoparticles
62
3.5.5 Proteins and Peptides in the Synthesis of Nanoparticles 65
3.5.6 NADH?]dependent Reduction by Enzymes 65
3.5.7 Sulfate and Sulfite Reductase 66
3.5.8 Cyanobacteria 67
3.5.9 Cysteine Desulfhydrase in Rhodopseudomonas palustris 68
3.5.10 Nitrate and Nitrite reductase 68
3.6 E xtracellular Synthesis of Nanoparticles 69
3.6.1 Bacterial Excretions 69
3.6.2 Fungal Strains 71
3.6.3 Yeast: Oxido?]reductase Mechanism 72
3.6.4 Plant Extracts 73
3.7 Conclusion 76
References 78
4 Biofilms in Bio?]Nanotechnology: Opportunities and Challenges 83
Chun Kiat Ng, Anee Mohanty, and Bin Cao
4.1 Introduction 83
4.2 Microbial Synthesis of Nanomaterials 84
4.2.1 Overview 84
4.2.2 Significance of Biofilms in Biosynthesis of Nanomaterials 89
4.2.3 Synthesis of Nanomaterials using Biofilms 90
4.3 Interaction of Microbial Biofilms with Nanomaterials 90
4.3.1 Nanomaterials as Anti?]biofilm Agents 90
4.3.2 Nanomaterials as a Tool in Biofilm Studies 92
4.4 Future Perspectives 93
References 94
5 Extremophiles and Biosynthesis of Nanoparticles: Current and Future
Perspectives 101
Jingyi Zhang, Jetka Wanner, and Om V. Singh
5.1 Introduction 101
5.2 Synthesis of Nanoparticles 104
5.2.1 Microorganisms: An Asset in Nanoparticle Biosynthesis 104
5.2.2 E xtremophiles in Nanoparticle Biosynthesis 104
5.3 Mechanism of Nanoparticle Biosynthesis 108
5.4 Fermentative Production of Nanoparticles 111
5.5 Nanoparticle Recovery 114
5.6 Challenges and Future Perspectives 115
5.7 Conclusion 115
References 116
6 Biosynthesis of Size-Controlled Metal and Metal Oxide Nanoparticles by
Bacteria 123
Chung-Hao Kuo, David A. Kriz, Anton Gudz, and Steven L. Suib
6.1 Introduction 123
6.2 Intracellular Synthesis of Metal Nanoparticles by Bacteria 124
6.3 E xtracellular Synthesis of Metal Nanoparticles by Bacteria 129
6.4 Synthesis of Metal Oxide and Sulfide Nanoparticles by Bacteria 131
6.5 Conclusion 135
References 135
7 Methods of Nanoparticle Biosynthesis for Medical and Commercial
Applications 141
Shilpi Mishra, Saurabh Dixit, and Shivani Soni
7.1 Introduction 141
7.2 Biosynthesis of Nanoparticles using Bacteria 144
7.2.1 Synthesis of Silver Nanoparticles by Bacteria 144
7.2.2 Synthesis of Gold Nanoparticles by Bacteria 145
7.2.3 Synthesis of other Metallic Nanoparticles by Bacteria 145
7.3 Biosynthesis of Nanoparticles using Actinomycete 146
7.4 Biosynthesis of Nanoparticles using Fungi 147
7.5 Biosynthesis of Nanoparticles using Plants 148
7.6 Conclusions 149
References 149
8 Microbial Synthesis of Nanoparticles: An Overview 155
Sneha Singh, Ambarish Sharan Vidyarthi, and Abhimanyu Dev
8.1 Introduction 156
8.2 Nanoparticles Synthesis Inspired by Microorganisms 157
8.2.1 Bacteria in NPs Synthesis 162
8.2.2 Fungi in NPs Synthesis 167
8.2.3 Actinomycetes in NPs Synthesis 170
8.2.4 Yeast in NPs Synthesis 171
8.2.5 Virus in NPs Synthesis 173
8.3 Mechanisms of Nanoparticles Synthesis 174
8.4 Purification and Characterization of Nanoparticles 176
8.5 Conclusion 177
References 179
9 Microbial Diversity of Nanoparticle Biosynthesis 187
Raveendran Sindhu, Ashok Pandey, and Parameswaran Binod
9.1 Introduction 187
9.2 Microbial-mediated Nanoparticles 187
9.2.1 Gold 188
9.2.2 Silver 190
9.2.3 Selenium 191
9.2.4 Silica 192
9.2.5 Cadmium 192
9.2.6 Palladium 193
9.2.7 Zinc 193
9.2.8 Lead 194
9.2.9 Iron 195
9.2.10 Copper 195
9.2.11 Cerium 196
9.2.12 Microbial Quantum Dots 196
9.2.13 Cadmium Telluride 197
9.2.14 Iron Sulfide-greigite 198
9.3 Native and Engineered Microbes for Nanoparticle Synthesis 198
9.4 Commercial Aspects of Microbial Nanoparticle Synthesis 199
9.5 Conclusion 200
References 200
10 S ustainable Synthesis of Palladium(0) Nanocatalysts and their Potential
for Organohalogen Compounds Detoxification 205
Michael Bunge and Katrin Mackenzie
10.1 Introduction 205
10.2 Chemically Generated Palladium Nanocatalysts for Hydrodechlorination:
Current Methods and Materials 206
10.2.1 Pd Catalysts 206
10.2.2 Data Analysis 207
10.2.3 Pd as Dehalogenation Catalyst 207
10.2.4 Intrinsic Potential vs. Performance 208
10.2.5 Concepts for Pd Protection 210
10.3 Bio-supported Synthesis of Palladium Nanocatalysts 211
10.3.1 Background 211
10.4 Current Approaches for Synthesis of Palladium Catalysts in the
Presence of Microorganisms 212
10.4.1 Pd(II)-Tolerant Microorganisms for Future Biotechnological
Approaches 213
10.4.2 Controlling Size and Morphology during Bio-Synthesis 214
10.4.3 Putative and Documented Mechanisms of Biosynthesis of Palladium
Nanoparticles 215
10.4.4 Isolation of Nanocatalysts from the Cell Matrix and Stabilization
216
10.5 Bio-Palladium(0)-nanocatalyst Mediated Transformation of Organohalogen
Pollutants 217
10.6 Conclusions 218
References 219
11 E nvironmental Processing of Zn Containing Wastes and Generation of
Nanosized Value-Added Products 225
Abhilash and B.D. Pandey
11.1 Introduction 225
11.1.1 World Status of Zinc Production 226
11.1.2 E nvironmental Impact of the Process Wastes Generated 226
11.1.3 Production Status in India 227
11.1.4 Recent Attempts at Processing Low-Grade Ores and Tailings 228
11.2 Physical/Chemical/Hydrothermal Processing 229
11.2.1 E xtraction of Pb-Zn from Tailings for Utilization and Production in
China 229
11.2.2 Vegetation Program on Pb-Zn Tailings 229
11.2.3 Recovering Valuable Metals from Tailings and Residues 229
11.2.4 E xtraction of Vanadium, Lead and Zinc from Mining Dump in Zambia
230
11.2.5 Recovery of Zinc from Blast Furnace and other Dust/Secondary
Resources 230
11.2.6 Treatment and Recycling of Goethite Waste 231
11.2.7 Other Hydrometallurgical Treatments of Zinc-based Industrial Wastes
and Residues 231
11.3 Biohydrometallurgical Processing: International Scenario 233
11.3.1 Bioleaching of Zn from Copper Mining Residues by Aspergillus niger
233
11.3.2 Bioleaching of Zinc from Steel Plant Waste using Acidithiobacillus
ferrooxidans 234
11.3.3 Bacterial Leaching of Zinc from Chat (Chert) Pile Rock and Copper
from Tailings Pond Sediment 234
11.3.4 Dissolution of Zn from Zinc Mine Tailings 234
11.3.5 Microbial Diversity in Zinc Mines 234
11.3.6 Chromosomal Resistance Mechanisms of A. ferrooxidans on Zinc 235
11.3.7 Bioleaching of Zinc Sulfides by Acidithiobacillus ferrooxidans 235
11.3.8 Bioleaching of High-sphalerite Material 235
11.3.9 Bioleaching of Low-grade ZnS Concentrate and Complex Sulfides
(Pb-Zn) using Thermophilic Species 236
11.3.10 Improvement of Stains for Bio-processing of Sphalerite 236
11.3.11 Tank Bioleaching of ZnS and Zn Polymetallic Concentrates 237
11.3.12 Large-Scale Development for Zinc Concentrate Bioleaching 237
11.3.13 Scale-up Studies for Bioleaching of Low-Grade Sphalerite Ore 238
11.3.14 Zinc Resistance Mechanism in Bacteria 238
11.4 Biohydrometallurgical Processing: Indian Scenario 238
11.4.1 E lectro-Bioleaching of Sphalerite Flotation Concentrate 239
11.4.2 Bioleaching of Zinc Sulfide Concentrate 239
11.4.3 Bioleaching of Moore Cake and Sphalarite Tailings 239
11.5 Synthesis of Nanoparticles 240
11.6 Applications of Zinc-based Value-added Products/Nanomaterials 244
11.6.1 Hydro-Gel for Bio-applications 244
11.6.2 Sensors 244
11.6.3 Biomedical Applications 245
11.6.4 Antibacterial Properties 245
11.6.5 Zeolites in biomedical applications 246
11.6.6 Textiles 246
11.6.7 Prospects of Zinc Recovery from Tailings and Biosynthesis of
Zinc-based Nano-materials 246
11.7 Conclusions and Future Directions 247
References 248
12 Interaction Between Nanoparticles and Plants: Increasing Evidence of
Phytotoxicity 255
Rajeshwari Sinha and S.K. Khare
12.1 Introduction 255
12.2 Plant-Nanoparticle Interactions 256
12.3 E ffect of Nanoparticles on Plants 256
12.3.1 Monocot Plants 257
12.3.2 Dicot Plants 257
12.4 Mechanisms of Nanoparticle?]induced Phytotoxicity 257
12.4.1 Endocytosis 257
12.4.2 Transfer through Ion Channels Post?]ionization 262
12.4.3 Aquaporin Mediated 262
12.4.4 Carrier Proteins Mediated 262
12.4.5 Via Organic Matter 262
12.4.6 Complex Formation with Root Exudates 262
12.4.7 Foliar Uptake 263
12.5 E ffect on Physiological Parameters 263
12.5.1 Loss of Hydraulic Conductivity 263
12.5.2 Genotoxic Effects 263
12.5.3 Absorption and Accumulation 263
12.5.4 Generation of Reactive Oxygen Species (ROS) 264
12.5.5 Biotransformation of NPs 264
12.6 Genectic and Molecular Basis of NP Phytotoxicity 266
12.7 Conclusions and Future Perspectives 266
References 267
13 Cytotoxicology of Nanocomposites 273
Horacio Bach
13.1 Introduction 273
13.2 Cellular Toxicity 274
13.2.1 Mechanisms of Cellular Toxicity 274
13.2.2 E ffect of Glutathione (GSH) in Oxidative Stress 276
13.2.3 Damage to Cellular Biomolecules 277
13.3 Nanoparticle Fabrication 281
13.3.1 Physico?]chemical Characteristics of NPs 282
13.3.2 Cellular Uptake 284
13.3.3 Factors Affecting the Internalization of NPs 287
13.4 Immunological Response 289
13.4.1 Cytokine Production 289
13.4.2 Cytotoxicity, Necrosis, Apoptosis, and Cell Death 290
13.5 Factors to Consider to Reduce the Cytotoxic Effects of NP 292
13.6 Conclusions and Future Directions 293
References 294
14 Nanotechnology: Overview of Regulations and Implementations 303
Om V. Singh and Thomas Colonna
14.1 Introduction 303
14.2 Scope of Nanotechnology 305
14.3 Safety Concerns Related to Nanotechnology 310
14.4 Barriers to the Desired Regulatory Framework 311
14.4.1 Regulatory Framework in the United States 312
14.4.2 Global Efforts toward Regulation of Nanotechnology 315
14.5 Biosynthesis of Microbial Bio?]nanoparticles: An Alternative
Production Method 317
14.6 Conclusion 325
References 326
Name index 331
Subject index 333
Introduction xvii
1 Diversity of Microbes in Synthesis of Metal Nanoparticles: Progress and
Limitations 1
Mahendra Rai, Irena Maliszewska, Avinash Ingle, Indarchand Gupta, and Alka
Yadav
1.1 Introduction 1
1.2 Synthesis of Nanoparticles by Bacteria 2
1.3 Synthesis of Nanoparticles by Fungi 9
1.4 Synthesis of Nanoparticles by Algae 12
1.5 Applications of Metal Nanoparticles 16
1.5.1 Nanoparticles as Catalyst 16
1.5.2 Nanoparticles as Bio?]membranes 17
1.5.3 Nanoparticles in Cancer Treatment 17
1.5.4 Nanoparticles in Drug Delivery 17
1.5.5 Nanoparticles for Detection and Destruction of Pesticides 17
1.5.6 Nanoparticles in Water Treatment 18
1.6 Limitations of Synthesis of Biogenic Nanoparticles 18
References 20
2 Role of Fungi Toward Synthesis of Nano?]Oxides 31
Rajesh Ramanathan and Vipul Bansal
2.1 Introduction 31
2.2 Fungus?]mediated Synthesis of Nanomaterials 34
2.2.1 Biosynthesis of Binary Nano?]oxides using Chemical Precursors 34
2.2.2 Biosynthesis of Complex Mixed?]metal Nano?]oxides using Chemical
Precursors 39
2.2.3 Biosynthesis of Nano?]oxides using Natural Precursors employing
Bioleaching Approach 42
2.2.4 Biosynthesis of nano?]oxides employing bio?]milling approach 44
2.3 Outlook 46
References 47
3 Microbial Molecular Mechanisms in Biosynthesis of Nanoparticles 53
Atmakuru Ramesh, Marimuthu Thiripura Sundari, and Perumal Elumalai
Thirugnanam
3.1 Introduction 53
3.2 Chemical Synthesis of Metal Nanoparticles 54
3.2.1 Brust-Schiffrin Synthesis 55
3.3 Green Synthesis 57
3.4 Biosynthesis of Nanoparticles 58
3.5 Mechanisms for Formation or Synthesis of Nanoparticles 61
3.5.1 Biomineralization using Magnetotactic Bacteria (MTB) 61
3.5.2 Reduction of Tellurite using Phototroph Rhodobacter capsulatus 62
3.5.3 Formation of AgNPs using Lactic Acid and Bacteria 62
3.5.4 Microfluidic Cellular Bioreactor for the Generation of Nanoparticles
62
3.5.5 Proteins and Peptides in the Synthesis of Nanoparticles 65
3.5.6 NADH?]dependent Reduction by Enzymes 65
3.5.7 Sulfate and Sulfite Reductase 66
3.5.8 Cyanobacteria 67
3.5.9 Cysteine Desulfhydrase in Rhodopseudomonas palustris 68
3.5.10 Nitrate and Nitrite reductase 68
3.6 E xtracellular Synthesis of Nanoparticles 69
3.6.1 Bacterial Excretions 69
3.6.2 Fungal Strains 71
3.6.3 Yeast: Oxido?]reductase Mechanism 72
3.6.4 Plant Extracts 73
3.7 Conclusion 76
References 78
4 Biofilms in Bio?]Nanotechnology: Opportunities and Challenges 83
Chun Kiat Ng, Anee Mohanty, and Bin Cao
4.1 Introduction 83
4.2 Microbial Synthesis of Nanomaterials 84
4.2.1 Overview 84
4.2.2 Significance of Biofilms in Biosynthesis of Nanomaterials 89
4.2.3 Synthesis of Nanomaterials using Biofilms 90
4.3 Interaction of Microbial Biofilms with Nanomaterials 90
4.3.1 Nanomaterials as Anti?]biofilm Agents 90
4.3.2 Nanomaterials as a Tool in Biofilm Studies 92
4.4 Future Perspectives 93
References 94
5 Extremophiles and Biosynthesis of Nanoparticles: Current and Future
Perspectives 101
Jingyi Zhang, Jetka Wanner, and Om V. Singh
5.1 Introduction 101
5.2 Synthesis of Nanoparticles 104
5.2.1 Microorganisms: An Asset in Nanoparticle Biosynthesis 104
5.2.2 E xtremophiles in Nanoparticle Biosynthesis 104
5.3 Mechanism of Nanoparticle Biosynthesis 108
5.4 Fermentative Production of Nanoparticles 111
5.5 Nanoparticle Recovery 114
5.6 Challenges and Future Perspectives 115
5.7 Conclusion 115
References 116
6 Biosynthesis of Size-Controlled Metal and Metal Oxide Nanoparticles by
Bacteria 123
Chung-Hao Kuo, David A. Kriz, Anton Gudz, and Steven L. Suib
6.1 Introduction 123
6.2 Intracellular Synthesis of Metal Nanoparticles by Bacteria 124
6.3 E xtracellular Synthesis of Metal Nanoparticles by Bacteria 129
6.4 Synthesis of Metal Oxide and Sulfide Nanoparticles by Bacteria 131
6.5 Conclusion 135
References 135
7 Methods of Nanoparticle Biosynthesis for Medical and Commercial
Applications 141
Shilpi Mishra, Saurabh Dixit, and Shivani Soni
7.1 Introduction 141
7.2 Biosynthesis of Nanoparticles using Bacteria 144
7.2.1 Synthesis of Silver Nanoparticles by Bacteria 144
7.2.2 Synthesis of Gold Nanoparticles by Bacteria 145
7.2.3 Synthesis of other Metallic Nanoparticles by Bacteria 145
7.3 Biosynthesis of Nanoparticles using Actinomycete 146
7.4 Biosynthesis of Nanoparticles using Fungi 147
7.5 Biosynthesis of Nanoparticles using Plants 148
7.6 Conclusions 149
References 149
8 Microbial Synthesis of Nanoparticles: An Overview 155
Sneha Singh, Ambarish Sharan Vidyarthi, and Abhimanyu Dev
8.1 Introduction 156
8.2 Nanoparticles Synthesis Inspired by Microorganisms 157
8.2.1 Bacteria in NPs Synthesis 162
8.2.2 Fungi in NPs Synthesis 167
8.2.3 Actinomycetes in NPs Synthesis 170
8.2.4 Yeast in NPs Synthesis 171
8.2.5 Virus in NPs Synthesis 173
8.3 Mechanisms of Nanoparticles Synthesis 174
8.4 Purification and Characterization of Nanoparticles 176
8.5 Conclusion 177
References 179
9 Microbial Diversity of Nanoparticle Biosynthesis 187
Raveendran Sindhu, Ashok Pandey, and Parameswaran Binod
9.1 Introduction 187
9.2 Microbial-mediated Nanoparticles 187
9.2.1 Gold 188
9.2.2 Silver 190
9.2.3 Selenium 191
9.2.4 Silica 192
9.2.5 Cadmium 192
9.2.6 Palladium 193
9.2.7 Zinc 193
9.2.8 Lead 194
9.2.9 Iron 195
9.2.10 Copper 195
9.2.11 Cerium 196
9.2.12 Microbial Quantum Dots 196
9.2.13 Cadmium Telluride 197
9.2.14 Iron Sulfide-greigite 198
9.3 Native and Engineered Microbes for Nanoparticle Synthesis 198
9.4 Commercial Aspects of Microbial Nanoparticle Synthesis 199
9.5 Conclusion 200
References 200
10 S ustainable Synthesis of Palladium(0) Nanocatalysts and their Potential
for Organohalogen Compounds Detoxification 205
Michael Bunge and Katrin Mackenzie
10.1 Introduction 205
10.2 Chemically Generated Palladium Nanocatalysts for Hydrodechlorination:
Current Methods and Materials 206
10.2.1 Pd Catalysts 206
10.2.2 Data Analysis 207
10.2.3 Pd as Dehalogenation Catalyst 207
10.2.4 Intrinsic Potential vs. Performance 208
10.2.5 Concepts for Pd Protection 210
10.3 Bio-supported Synthesis of Palladium Nanocatalysts 211
10.3.1 Background 211
10.4 Current Approaches for Synthesis of Palladium Catalysts in the
Presence of Microorganisms 212
10.4.1 Pd(II)-Tolerant Microorganisms for Future Biotechnological
Approaches 213
10.4.2 Controlling Size and Morphology during Bio-Synthesis 214
10.4.3 Putative and Documented Mechanisms of Biosynthesis of Palladium
Nanoparticles 215
10.4.4 Isolation of Nanocatalysts from the Cell Matrix and Stabilization
216
10.5 Bio-Palladium(0)-nanocatalyst Mediated Transformation of Organohalogen
Pollutants 217
10.6 Conclusions 218
References 219
11 E nvironmental Processing of Zn Containing Wastes and Generation of
Nanosized Value-Added Products 225
Abhilash and B.D. Pandey
11.1 Introduction 225
11.1.1 World Status of Zinc Production 226
11.1.2 E nvironmental Impact of the Process Wastes Generated 226
11.1.3 Production Status in India 227
11.1.4 Recent Attempts at Processing Low-Grade Ores and Tailings 228
11.2 Physical/Chemical/Hydrothermal Processing 229
11.2.1 E xtraction of Pb-Zn from Tailings for Utilization and Production in
China 229
11.2.2 Vegetation Program on Pb-Zn Tailings 229
11.2.3 Recovering Valuable Metals from Tailings and Residues 229
11.2.4 E xtraction of Vanadium, Lead and Zinc from Mining Dump in Zambia
230
11.2.5 Recovery of Zinc from Blast Furnace and other Dust/Secondary
Resources 230
11.2.6 Treatment and Recycling of Goethite Waste 231
11.2.7 Other Hydrometallurgical Treatments of Zinc-based Industrial Wastes
and Residues 231
11.3 Biohydrometallurgical Processing: International Scenario 233
11.3.1 Bioleaching of Zn from Copper Mining Residues by Aspergillus niger
233
11.3.2 Bioleaching of Zinc from Steel Plant Waste using Acidithiobacillus
ferrooxidans 234
11.3.3 Bacterial Leaching of Zinc from Chat (Chert) Pile Rock and Copper
from Tailings Pond Sediment 234
11.3.4 Dissolution of Zn from Zinc Mine Tailings 234
11.3.5 Microbial Diversity in Zinc Mines 234
11.3.6 Chromosomal Resistance Mechanisms of A. ferrooxidans on Zinc 235
11.3.7 Bioleaching of Zinc Sulfides by Acidithiobacillus ferrooxidans 235
11.3.8 Bioleaching of High-sphalerite Material 235
11.3.9 Bioleaching of Low-grade ZnS Concentrate and Complex Sulfides
(Pb-Zn) using Thermophilic Species 236
11.3.10 Improvement of Stains for Bio-processing of Sphalerite 236
11.3.11 Tank Bioleaching of ZnS and Zn Polymetallic Concentrates 237
11.3.12 Large-Scale Development for Zinc Concentrate Bioleaching 237
11.3.13 Scale-up Studies for Bioleaching of Low-Grade Sphalerite Ore 238
11.3.14 Zinc Resistance Mechanism in Bacteria 238
11.4 Biohydrometallurgical Processing: Indian Scenario 238
11.4.1 E lectro-Bioleaching of Sphalerite Flotation Concentrate 239
11.4.2 Bioleaching of Zinc Sulfide Concentrate 239
11.4.3 Bioleaching of Moore Cake and Sphalarite Tailings 239
11.5 Synthesis of Nanoparticles 240
11.6 Applications of Zinc-based Value-added Products/Nanomaterials 244
11.6.1 Hydro-Gel for Bio-applications 244
11.6.2 Sensors 244
11.6.3 Biomedical Applications 245
11.6.4 Antibacterial Properties 245
11.6.5 Zeolites in biomedical applications 246
11.6.6 Textiles 246
11.6.7 Prospects of Zinc Recovery from Tailings and Biosynthesis of
Zinc-based Nano-materials 246
11.7 Conclusions and Future Directions 247
References 248
12 Interaction Between Nanoparticles and Plants: Increasing Evidence of
Phytotoxicity 255
Rajeshwari Sinha and S.K. Khare
12.1 Introduction 255
12.2 Plant-Nanoparticle Interactions 256
12.3 E ffect of Nanoparticles on Plants 256
12.3.1 Monocot Plants 257
12.3.2 Dicot Plants 257
12.4 Mechanisms of Nanoparticle?]induced Phytotoxicity 257
12.4.1 Endocytosis 257
12.4.2 Transfer through Ion Channels Post?]ionization 262
12.4.3 Aquaporin Mediated 262
12.4.4 Carrier Proteins Mediated 262
12.4.5 Via Organic Matter 262
12.4.6 Complex Formation with Root Exudates 262
12.4.7 Foliar Uptake 263
12.5 E ffect on Physiological Parameters 263
12.5.1 Loss of Hydraulic Conductivity 263
12.5.2 Genotoxic Effects 263
12.5.3 Absorption and Accumulation 263
12.5.4 Generation of Reactive Oxygen Species (ROS) 264
12.5.5 Biotransformation of NPs 264
12.6 Genectic and Molecular Basis of NP Phytotoxicity 266
12.7 Conclusions and Future Perspectives 266
References 267
13 Cytotoxicology of Nanocomposites 273
Horacio Bach
13.1 Introduction 273
13.2 Cellular Toxicity 274
13.2.1 Mechanisms of Cellular Toxicity 274
13.2.2 E ffect of Glutathione (GSH) in Oxidative Stress 276
13.2.3 Damage to Cellular Biomolecules 277
13.3 Nanoparticle Fabrication 281
13.3.1 Physico?]chemical Characteristics of NPs 282
13.3.2 Cellular Uptake 284
13.3.3 Factors Affecting the Internalization of NPs 287
13.4 Immunological Response 289
13.4.1 Cytokine Production 289
13.4.2 Cytotoxicity, Necrosis, Apoptosis, and Cell Death 290
13.5 Factors to Consider to Reduce the Cytotoxic Effects of NP 292
13.6 Conclusions and Future Directions 293
References 294
14 Nanotechnology: Overview of Regulations and Implementations 303
Om V. Singh and Thomas Colonna
14.1 Introduction 303
14.2 Scope of Nanotechnology 305
14.3 Safety Concerns Related to Nanotechnology 310
14.4 Barriers to the Desired Regulatory Framework 311
14.4.1 Regulatory Framework in the United States 312
14.4.2 Global Efforts toward Regulation of Nanotechnology 315
14.5 Biosynthesis of Microbial Bio?]nanoparticles: An Alternative
Production Method 317
14.6 Conclusion 325
References 326
Name index 331
Subject index 333
List of Contributors xv
Introduction xvii
1 Diversity of Microbes in Synthesis of Metal Nanoparticles: Progress and
Limitations 1
Mahendra Rai, Irena Maliszewska, Avinash Ingle, Indarchand Gupta, and Alka
Yadav
1.1 Introduction 1
1.2 Synthesis of Nanoparticles by Bacteria 2
1.3 Synthesis of Nanoparticles by Fungi 9
1.4 Synthesis of Nanoparticles by Algae 12
1.5 Applications of Metal Nanoparticles 16
1.5.1 Nanoparticles as Catalyst 16
1.5.2 Nanoparticles as Bio?]membranes 17
1.5.3 Nanoparticles in Cancer Treatment 17
1.5.4 Nanoparticles in Drug Delivery 17
1.5.5 Nanoparticles for Detection and Destruction of Pesticides 17
1.5.6 Nanoparticles in Water Treatment 18
1.6 Limitations of Synthesis of Biogenic Nanoparticles 18
References 20
2 Role of Fungi Toward Synthesis of Nano?]Oxides 31
Rajesh Ramanathan and Vipul Bansal
2.1 Introduction 31
2.2 Fungus?]mediated Synthesis of Nanomaterials 34
2.2.1 Biosynthesis of Binary Nano?]oxides using Chemical Precursors 34
2.2.2 Biosynthesis of Complex Mixed?]metal Nano?]oxides using Chemical
Precursors 39
2.2.3 Biosynthesis of Nano?]oxides using Natural Precursors employing
Bioleaching Approach 42
2.2.4 Biosynthesis of nano?]oxides employing bio?]milling approach 44
2.3 Outlook 46
References 47
3 Microbial Molecular Mechanisms in Biosynthesis of Nanoparticles 53
Atmakuru Ramesh, Marimuthu Thiripura Sundari, and Perumal Elumalai
Thirugnanam
3.1 Introduction 53
3.2 Chemical Synthesis of Metal Nanoparticles 54
3.2.1 Brust-Schiffrin Synthesis 55
3.3 Green Synthesis 57
3.4 Biosynthesis of Nanoparticles 58
3.5 Mechanisms for Formation or Synthesis of Nanoparticles 61
3.5.1 Biomineralization using Magnetotactic Bacteria (MTB) 61
3.5.2 Reduction of Tellurite using Phototroph Rhodobacter capsulatus 62
3.5.3 Formation of AgNPs using Lactic Acid and Bacteria 62
3.5.4 Microfluidic Cellular Bioreactor for the Generation of Nanoparticles
62
3.5.5 Proteins and Peptides in the Synthesis of Nanoparticles 65
3.5.6 NADH?]dependent Reduction by Enzymes 65
3.5.7 Sulfate and Sulfite Reductase 66
3.5.8 Cyanobacteria 67
3.5.9 Cysteine Desulfhydrase in Rhodopseudomonas palustris 68
3.5.10 Nitrate and Nitrite reductase 68
3.6 E xtracellular Synthesis of Nanoparticles 69
3.6.1 Bacterial Excretions 69
3.6.2 Fungal Strains 71
3.6.3 Yeast: Oxido?]reductase Mechanism 72
3.6.4 Plant Extracts 73
3.7 Conclusion 76
References 78
4 Biofilms in Bio?]Nanotechnology: Opportunities and Challenges 83
Chun Kiat Ng, Anee Mohanty, and Bin Cao
4.1 Introduction 83
4.2 Microbial Synthesis of Nanomaterials 84
4.2.1 Overview 84
4.2.2 Significance of Biofilms in Biosynthesis of Nanomaterials 89
4.2.3 Synthesis of Nanomaterials using Biofilms 90
4.3 Interaction of Microbial Biofilms with Nanomaterials 90
4.3.1 Nanomaterials as Anti?]biofilm Agents 90
4.3.2 Nanomaterials as a Tool in Biofilm Studies 92
4.4 Future Perspectives 93
References 94
5 Extremophiles and Biosynthesis of Nanoparticles: Current and Future
Perspectives 101
Jingyi Zhang, Jetka Wanner, and Om V. Singh
5.1 Introduction 101
5.2 Synthesis of Nanoparticles 104
5.2.1 Microorganisms: An Asset in Nanoparticle Biosynthesis 104
5.2.2 E xtremophiles in Nanoparticle Biosynthesis 104
5.3 Mechanism of Nanoparticle Biosynthesis 108
5.4 Fermentative Production of Nanoparticles 111
5.5 Nanoparticle Recovery 114
5.6 Challenges and Future Perspectives 115
5.7 Conclusion 115
References 116
6 Biosynthesis of Size-Controlled Metal and Metal Oxide Nanoparticles by
Bacteria 123
Chung-Hao Kuo, David A. Kriz, Anton Gudz, and Steven L. Suib
6.1 Introduction 123
6.2 Intracellular Synthesis of Metal Nanoparticles by Bacteria 124
6.3 E xtracellular Synthesis of Metal Nanoparticles by Bacteria 129
6.4 Synthesis of Metal Oxide and Sulfide Nanoparticles by Bacteria 131
6.5 Conclusion 135
References 135
7 Methods of Nanoparticle Biosynthesis for Medical and Commercial
Applications 141
Shilpi Mishra, Saurabh Dixit, and Shivani Soni
7.1 Introduction 141
7.2 Biosynthesis of Nanoparticles using Bacteria 144
7.2.1 Synthesis of Silver Nanoparticles by Bacteria 144
7.2.2 Synthesis of Gold Nanoparticles by Bacteria 145
7.2.3 Synthesis of other Metallic Nanoparticles by Bacteria 145
7.3 Biosynthesis of Nanoparticles using Actinomycete 146
7.4 Biosynthesis of Nanoparticles using Fungi 147
7.5 Biosynthesis of Nanoparticles using Plants 148
7.6 Conclusions 149
References 149
8 Microbial Synthesis of Nanoparticles: An Overview 155
Sneha Singh, Ambarish Sharan Vidyarthi, and Abhimanyu Dev
8.1 Introduction 156
8.2 Nanoparticles Synthesis Inspired by Microorganisms 157
8.2.1 Bacteria in NPs Synthesis 162
8.2.2 Fungi in NPs Synthesis 167
8.2.3 Actinomycetes in NPs Synthesis 170
8.2.4 Yeast in NPs Synthesis 171
8.2.5 Virus in NPs Synthesis 173
8.3 Mechanisms of Nanoparticles Synthesis 174
8.4 Purification and Characterization of Nanoparticles 176
8.5 Conclusion 177
References 179
9 Microbial Diversity of Nanoparticle Biosynthesis 187
Raveendran Sindhu, Ashok Pandey, and Parameswaran Binod
9.1 Introduction 187
9.2 Microbial-mediated Nanoparticles 187
9.2.1 Gold 188
9.2.2 Silver 190
9.2.3 Selenium 191
9.2.4 Silica 192
9.2.5 Cadmium 192
9.2.6 Palladium 193
9.2.7 Zinc 193
9.2.8 Lead 194
9.2.9 Iron 195
9.2.10 Copper 195
9.2.11 Cerium 196
9.2.12 Microbial Quantum Dots 196
9.2.13 Cadmium Telluride 197
9.2.14 Iron Sulfide-greigite 198
9.3 Native and Engineered Microbes for Nanoparticle Synthesis 198
9.4 Commercial Aspects of Microbial Nanoparticle Synthesis 199
9.5 Conclusion 200
References 200
10 S ustainable Synthesis of Palladium(0) Nanocatalysts and their Potential
for Organohalogen Compounds Detoxification 205
Michael Bunge and Katrin Mackenzie
10.1 Introduction 205
10.2 Chemically Generated Palladium Nanocatalysts for Hydrodechlorination:
Current Methods and Materials 206
10.2.1 Pd Catalysts 206
10.2.2 Data Analysis 207
10.2.3 Pd as Dehalogenation Catalyst 207
10.2.4 Intrinsic Potential vs. Performance 208
10.2.5 Concepts for Pd Protection 210
10.3 Bio-supported Synthesis of Palladium Nanocatalysts 211
10.3.1 Background 211
10.4 Current Approaches for Synthesis of Palladium Catalysts in the
Presence of Microorganisms 212
10.4.1 Pd(II)-Tolerant Microorganisms for Future Biotechnological
Approaches 213
10.4.2 Controlling Size and Morphology during Bio-Synthesis 214
10.4.3 Putative and Documented Mechanisms of Biosynthesis of Palladium
Nanoparticles 215
10.4.4 Isolation of Nanocatalysts from the Cell Matrix and Stabilization
216
10.5 Bio-Palladium(0)-nanocatalyst Mediated Transformation of Organohalogen
Pollutants 217
10.6 Conclusions 218
References 219
11 E nvironmental Processing of Zn Containing Wastes and Generation of
Nanosized Value-Added Products 225
Abhilash and B.D. Pandey
11.1 Introduction 225
11.1.1 World Status of Zinc Production 226
11.1.2 E nvironmental Impact of the Process Wastes Generated 226
11.1.3 Production Status in India 227
11.1.4 Recent Attempts at Processing Low-Grade Ores and Tailings 228
11.2 Physical/Chemical/Hydrothermal Processing 229
11.2.1 E xtraction of Pb-Zn from Tailings for Utilization and Production in
China 229
11.2.2 Vegetation Program on Pb-Zn Tailings 229
11.2.3 Recovering Valuable Metals from Tailings and Residues 229
11.2.4 E xtraction of Vanadium, Lead and Zinc from Mining Dump in Zambia
230
11.2.5 Recovery of Zinc from Blast Furnace and other Dust/Secondary
Resources 230
11.2.6 Treatment and Recycling of Goethite Waste 231
11.2.7 Other Hydrometallurgical Treatments of Zinc-based Industrial Wastes
and Residues 231
11.3 Biohydrometallurgical Processing: International Scenario 233
11.3.1 Bioleaching of Zn from Copper Mining Residues by Aspergillus niger
233
11.3.2 Bioleaching of Zinc from Steel Plant Waste using Acidithiobacillus
ferrooxidans 234
11.3.3 Bacterial Leaching of Zinc from Chat (Chert) Pile Rock and Copper
from Tailings Pond Sediment 234
11.3.4 Dissolution of Zn from Zinc Mine Tailings 234
11.3.5 Microbial Diversity in Zinc Mines 234
11.3.6 Chromosomal Resistance Mechanisms of A. ferrooxidans on Zinc 235
11.3.7 Bioleaching of Zinc Sulfides by Acidithiobacillus ferrooxidans 235
11.3.8 Bioleaching of High-sphalerite Material 235
11.3.9 Bioleaching of Low-grade ZnS Concentrate and Complex Sulfides
(Pb-Zn) using Thermophilic Species 236
11.3.10 Improvement of Stains for Bio-processing of Sphalerite 236
11.3.11 Tank Bioleaching of ZnS and Zn Polymetallic Concentrates 237
11.3.12 Large-Scale Development for Zinc Concentrate Bioleaching 237
11.3.13 Scale-up Studies for Bioleaching of Low-Grade Sphalerite Ore 238
11.3.14 Zinc Resistance Mechanism in Bacteria 238
11.4 Biohydrometallurgical Processing: Indian Scenario 238
11.4.1 E lectro-Bioleaching of Sphalerite Flotation Concentrate 239
11.4.2 Bioleaching of Zinc Sulfide Concentrate 239
11.4.3 Bioleaching of Moore Cake and Sphalarite Tailings 239
11.5 Synthesis of Nanoparticles 240
11.6 Applications of Zinc-based Value-added Products/Nanomaterials 244
11.6.1 Hydro-Gel for Bio-applications 244
11.6.2 Sensors 244
11.6.3 Biomedical Applications 245
11.6.4 Antibacterial Properties 245
11.6.5 Zeolites in biomedical applications 246
11.6.6 Textiles 246
11.6.7 Prospects of Zinc Recovery from Tailings and Biosynthesis of
Zinc-based Nano-materials 246
11.7 Conclusions and Future Directions 247
References 248
12 Interaction Between Nanoparticles and Plants: Increasing Evidence of
Phytotoxicity 255
Rajeshwari Sinha and S.K. Khare
12.1 Introduction 255
12.2 Plant-Nanoparticle Interactions 256
12.3 E ffect of Nanoparticles on Plants 256
12.3.1 Monocot Plants 257
12.3.2 Dicot Plants 257
12.4 Mechanisms of Nanoparticle?]induced Phytotoxicity 257
12.4.1 Endocytosis 257
12.4.2 Transfer through Ion Channels Post?]ionization 262
12.4.3 Aquaporin Mediated 262
12.4.4 Carrier Proteins Mediated 262
12.4.5 Via Organic Matter 262
12.4.6 Complex Formation with Root Exudates 262
12.4.7 Foliar Uptake 263
12.5 E ffect on Physiological Parameters 263
12.5.1 Loss of Hydraulic Conductivity 263
12.5.2 Genotoxic Effects 263
12.5.3 Absorption and Accumulation 263
12.5.4 Generation of Reactive Oxygen Species (ROS) 264
12.5.5 Biotransformation of NPs 264
12.6 Genectic and Molecular Basis of NP Phytotoxicity 266
12.7 Conclusions and Future Perspectives 266
References 267
13 Cytotoxicology of Nanocomposites 273
Horacio Bach
13.1 Introduction 273
13.2 Cellular Toxicity 274
13.2.1 Mechanisms of Cellular Toxicity 274
13.2.2 E ffect of Glutathione (GSH) in Oxidative Stress 276
13.2.3 Damage to Cellular Biomolecules 277
13.3 Nanoparticle Fabrication 281
13.3.1 Physico?]chemical Characteristics of NPs 282
13.3.2 Cellular Uptake 284
13.3.3 Factors Affecting the Internalization of NPs 287
13.4 Immunological Response 289
13.4.1 Cytokine Production 289
13.4.2 Cytotoxicity, Necrosis, Apoptosis, and Cell Death 290
13.5 Factors to Consider to Reduce the Cytotoxic Effects of NP 292
13.6 Conclusions and Future Directions 293
References 294
14 Nanotechnology: Overview of Regulations and Implementations 303
Om V. Singh and Thomas Colonna
14.1 Introduction 303
14.2 Scope of Nanotechnology 305
14.3 Safety Concerns Related to Nanotechnology 310
14.4 Barriers to the Desired Regulatory Framework 311
14.4.1 Regulatory Framework in the United States 312
14.4.2 Global Efforts toward Regulation of Nanotechnology 315
14.5 Biosynthesis of Microbial Bio?]nanoparticles: An Alternative
Production Method 317
14.6 Conclusion 325
References 326
Name index 331
Subject index 333
Introduction xvii
1 Diversity of Microbes in Synthesis of Metal Nanoparticles: Progress and
Limitations 1
Mahendra Rai, Irena Maliszewska, Avinash Ingle, Indarchand Gupta, and Alka
Yadav
1.1 Introduction 1
1.2 Synthesis of Nanoparticles by Bacteria 2
1.3 Synthesis of Nanoparticles by Fungi 9
1.4 Synthesis of Nanoparticles by Algae 12
1.5 Applications of Metal Nanoparticles 16
1.5.1 Nanoparticles as Catalyst 16
1.5.2 Nanoparticles as Bio?]membranes 17
1.5.3 Nanoparticles in Cancer Treatment 17
1.5.4 Nanoparticles in Drug Delivery 17
1.5.5 Nanoparticles for Detection and Destruction of Pesticides 17
1.5.6 Nanoparticles in Water Treatment 18
1.6 Limitations of Synthesis of Biogenic Nanoparticles 18
References 20
2 Role of Fungi Toward Synthesis of Nano?]Oxides 31
Rajesh Ramanathan and Vipul Bansal
2.1 Introduction 31
2.2 Fungus?]mediated Synthesis of Nanomaterials 34
2.2.1 Biosynthesis of Binary Nano?]oxides using Chemical Precursors 34
2.2.2 Biosynthesis of Complex Mixed?]metal Nano?]oxides using Chemical
Precursors 39
2.2.3 Biosynthesis of Nano?]oxides using Natural Precursors employing
Bioleaching Approach 42
2.2.4 Biosynthesis of nano?]oxides employing bio?]milling approach 44
2.3 Outlook 46
References 47
3 Microbial Molecular Mechanisms in Biosynthesis of Nanoparticles 53
Atmakuru Ramesh, Marimuthu Thiripura Sundari, and Perumal Elumalai
Thirugnanam
3.1 Introduction 53
3.2 Chemical Synthesis of Metal Nanoparticles 54
3.2.1 Brust-Schiffrin Synthesis 55
3.3 Green Synthesis 57
3.4 Biosynthesis of Nanoparticles 58
3.5 Mechanisms for Formation or Synthesis of Nanoparticles 61
3.5.1 Biomineralization using Magnetotactic Bacteria (MTB) 61
3.5.2 Reduction of Tellurite using Phototroph Rhodobacter capsulatus 62
3.5.3 Formation of AgNPs using Lactic Acid and Bacteria 62
3.5.4 Microfluidic Cellular Bioreactor for the Generation of Nanoparticles
62
3.5.5 Proteins and Peptides in the Synthesis of Nanoparticles 65
3.5.6 NADH?]dependent Reduction by Enzymes 65
3.5.7 Sulfate and Sulfite Reductase 66
3.5.8 Cyanobacteria 67
3.5.9 Cysteine Desulfhydrase in Rhodopseudomonas palustris 68
3.5.10 Nitrate and Nitrite reductase 68
3.6 E xtracellular Synthesis of Nanoparticles 69
3.6.1 Bacterial Excretions 69
3.6.2 Fungal Strains 71
3.6.3 Yeast: Oxido?]reductase Mechanism 72
3.6.4 Plant Extracts 73
3.7 Conclusion 76
References 78
4 Biofilms in Bio?]Nanotechnology: Opportunities and Challenges 83
Chun Kiat Ng, Anee Mohanty, and Bin Cao
4.1 Introduction 83
4.2 Microbial Synthesis of Nanomaterials 84
4.2.1 Overview 84
4.2.2 Significance of Biofilms in Biosynthesis of Nanomaterials 89
4.2.3 Synthesis of Nanomaterials using Biofilms 90
4.3 Interaction of Microbial Biofilms with Nanomaterials 90
4.3.1 Nanomaterials as Anti?]biofilm Agents 90
4.3.2 Nanomaterials as a Tool in Biofilm Studies 92
4.4 Future Perspectives 93
References 94
5 Extremophiles and Biosynthesis of Nanoparticles: Current and Future
Perspectives 101
Jingyi Zhang, Jetka Wanner, and Om V. Singh
5.1 Introduction 101
5.2 Synthesis of Nanoparticles 104
5.2.1 Microorganisms: An Asset in Nanoparticle Biosynthesis 104
5.2.2 E xtremophiles in Nanoparticle Biosynthesis 104
5.3 Mechanism of Nanoparticle Biosynthesis 108
5.4 Fermentative Production of Nanoparticles 111
5.5 Nanoparticle Recovery 114
5.6 Challenges and Future Perspectives 115
5.7 Conclusion 115
References 116
6 Biosynthesis of Size-Controlled Metal and Metal Oxide Nanoparticles by
Bacteria 123
Chung-Hao Kuo, David A. Kriz, Anton Gudz, and Steven L. Suib
6.1 Introduction 123
6.2 Intracellular Synthesis of Metal Nanoparticles by Bacteria 124
6.3 E xtracellular Synthesis of Metal Nanoparticles by Bacteria 129
6.4 Synthesis of Metal Oxide and Sulfide Nanoparticles by Bacteria 131
6.5 Conclusion 135
References 135
7 Methods of Nanoparticle Biosynthesis for Medical and Commercial
Applications 141
Shilpi Mishra, Saurabh Dixit, and Shivani Soni
7.1 Introduction 141
7.2 Biosynthesis of Nanoparticles using Bacteria 144
7.2.1 Synthesis of Silver Nanoparticles by Bacteria 144
7.2.2 Synthesis of Gold Nanoparticles by Bacteria 145
7.2.3 Synthesis of other Metallic Nanoparticles by Bacteria 145
7.3 Biosynthesis of Nanoparticles using Actinomycete 146
7.4 Biosynthesis of Nanoparticles using Fungi 147
7.5 Biosynthesis of Nanoparticles using Plants 148
7.6 Conclusions 149
References 149
8 Microbial Synthesis of Nanoparticles: An Overview 155
Sneha Singh, Ambarish Sharan Vidyarthi, and Abhimanyu Dev
8.1 Introduction 156
8.2 Nanoparticles Synthesis Inspired by Microorganisms 157
8.2.1 Bacteria in NPs Synthesis 162
8.2.2 Fungi in NPs Synthesis 167
8.2.3 Actinomycetes in NPs Synthesis 170
8.2.4 Yeast in NPs Synthesis 171
8.2.5 Virus in NPs Synthesis 173
8.3 Mechanisms of Nanoparticles Synthesis 174
8.4 Purification and Characterization of Nanoparticles 176
8.5 Conclusion 177
References 179
9 Microbial Diversity of Nanoparticle Biosynthesis 187
Raveendran Sindhu, Ashok Pandey, and Parameswaran Binod
9.1 Introduction 187
9.2 Microbial-mediated Nanoparticles 187
9.2.1 Gold 188
9.2.2 Silver 190
9.2.3 Selenium 191
9.2.4 Silica 192
9.2.5 Cadmium 192
9.2.6 Palladium 193
9.2.7 Zinc 193
9.2.8 Lead 194
9.2.9 Iron 195
9.2.10 Copper 195
9.2.11 Cerium 196
9.2.12 Microbial Quantum Dots 196
9.2.13 Cadmium Telluride 197
9.2.14 Iron Sulfide-greigite 198
9.3 Native and Engineered Microbes for Nanoparticle Synthesis 198
9.4 Commercial Aspects of Microbial Nanoparticle Synthesis 199
9.5 Conclusion 200
References 200
10 S ustainable Synthesis of Palladium(0) Nanocatalysts and their Potential
for Organohalogen Compounds Detoxification 205
Michael Bunge and Katrin Mackenzie
10.1 Introduction 205
10.2 Chemically Generated Palladium Nanocatalysts for Hydrodechlorination:
Current Methods and Materials 206
10.2.1 Pd Catalysts 206
10.2.2 Data Analysis 207
10.2.3 Pd as Dehalogenation Catalyst 207
10.2.4 Intrinsic Potential vs. Performance 208
10.2.5 Concepts for Pd Protection 210
10.3 Bio-supported Synthesis of Palladium Nanocatalysts 211
10.3.1 Background 211
10.4 Current Approaches for Synthesis of Palladium Catalysts in the
Presence of Microorganisms 212
10.4.1 Pd(II)-Tolerant Microorganisms for Future Biotechnological
Approaches 213
10.4.2 Controlling Size and Morphology during Bio-Synthesis 214
10.4.3 Putative and Documented Mechanisms of Biosynthesis of Palladium
Nanoparticles 215
10.4.4 Isolation of Nanocatalysts from the Cell Matrix and Stabilization
216
10.5 Bio-Palladium(0)-nanocatalyst Mediated Transformation of Organohalogen
Pollutants 217
10.6 Conclusions 218
References 219
11 E nvironmental Processing of Zn Containing Wastes and Generation of
Nanosized Value-Added Products 225
Abhilash and B.D. Pandey
11.1 Introduction 225
11.1.1 World Status of Zinc Production 226
11.1.2 E nvironmental Impact of the Process Wastes Generated 226
11.1.3 Production Status in India 227
11.1.4 Recent Attempts at Processing Low-Grade Ores and Tailings 228
11.2 Physical/Chemical/Hydrothermal Processing 229
11.2.1 E xtraction of Pb-Zn from Tailings for Utilization and Production in
China 229
11.2.2 Vegetation Program on Pb-Zn Tailings 229
11.2.3 Recovering Valuable Metals from Tailings and Residues 229
11.2.4 E xtraction of Vanadium, Lead and Zinc from Mining Dump in Zambia
230
11.2.5 Recovery of Zinc from Blast Furnace and other Dust/Secondary
Resources 230
11.2.6 Treatment and Recycling of Goethite Waste 231
11.2.7 Other Hydrometallurgical Treatments of Zinc-based Industrial Wastes
and Residues 231
11.3 Biohydrometallurgical Processing: International Scenario 233
11.3.1 Bioleaching of Zn from Copper Mining Residues by Aspergillus niger
233
11.3.2 Bioleaching of Zinc from Steel Plant Waste using Acidithiobacillus
ferrooxidans 234
11.3.3 Bacterial Leaching of Zinc from Chat (Chert) Pile Rock and Copper
from Tailings Pond Sediment 234
11.3.4 Dissolution of Zn from Zinc Mine Tailings 234
11.3.5 Microbial Diversity in Zinc Mines 234
11.3.6 Chromosomal Resistance Mechanisms of A. ferrooxidans on Zinc 235
11.3.7 Bioleaching of Zinc Sulfides by Acidithiobacillus ferrooxidans 235
11.3.8 Bioleaching of High-sphalerite Material 235
11.3.9 Bioleaching of Low-grade ZnS Concentrate and Complex Sulfides
(Pb-Zn) using Thermophilic Species 236
11.3.10 Improvement of Stains for Bio-processing of Sphalerite 236
11.3.11 Tank Bioleaching of ZnS and Zn Polymetallic Concentrates 237
11.3.12 Large-Scale Development for Zinc Concentrate Bioleaching 237
11.3.13 Scale-up Studies for Bioleaching of Low-Grade Sphalerite Ore 238
11.3.14 Zinc Resistance Mechanism in Bacteria 238
11.4 Biohydrometallurgical Processing: Indian Scenario 238
11.4.1 E lectro-Bioleaching of Sphalerite Flotation Concentrate 239
11.4.2 Bioleaching of Zinc Sulfide Concentrate 239
11.4.3 Bioleaching of Moore Cake and Sphalarite Tailings 239
11.5 Synthesis of Nanoparticles 240
11.6 Applications of Zinc-based Value-added Products/Nanomaterials 244
11.6.1 Hydro-Gel for Bio-applications 244
11.6.2 Sensors 244
11.6.3 Biomedical Applications 245
11.6.4 Antibacterial Properties 245
11.6.5 Zeolites in biomedical applications 246
11.6.6 Textiles 246
11.6.7 Prospects of Zinc Recovery from Tailings and Biosynthesis of
Zinc-based Nano-materials 246
11.7 Conclusions and Future Directions 247
References 248
12 Interaction Between Nanoparticles and Plants: Increasing Evidence of
Phytotoxicity 255
Rajeshwari Sinha and S.K. Khare
12.1 Introduction 255
12.2 Plant-Nanoparticle Interactions 256
12.3 E ffect of Nanoparticles on Plants 256
12.3.1 Monocot Plants 257
12.3.2 Dicot Plants 257
12.4 Mechanisms of Nanoparticle?]induced Phytotoxicity 257
12.4.1 Endocytosis 257
12.4.2 Transfer through Ion Channels Post?]ionization 262
12.4.3 Aquaporin Mediated 262
12.4.4 Carrier Proteins Mediated 262
12.4.5 Via Organic Matter 262
12.4.6 Complex Formation with Root Exudates 262
12.4.7 Foliar Uptake 263
12.5 E ffect on Physiological Parameters 263
12.5.1 Loss of Hydraulic Conductivity 263
12.5.2 Genotoxic Effects 263
12.5.3 Absorption and Accumulation 263
12.5.4 Generation of Reactive Oxygen Species (ROS) 264
12.5.5 Biotransformation of NPs 264
12.6 Genectic and Molecular Basis of NP Phytotoxicity 266
12.7 Conclusions and Future Perspectives 266
References 267
13 Cytotoxicology of Nanocomposites 273
Horacio Bach
13.1 Introduction 273
13.2 Cellular Toxicity 274
13.2.1 Mechanisms of Cellular Toxicity 274
13.2.2 E ffect of Glutathione (GSH) in Oxidative Stress 276
13.2.3 Damage to Cellular Biomolecules 277
13.3 Nanoparticle Fabrication 281
13.3.1 Physico?]chemical Characteristics of NPs 282
13.3.2 Cellular Uptake 284
13.3.3 Factors Affecting the Internalization of NPs 287
13.4 Immunological Response 289
13.4.1 Cytokine Production 289
13.4.2 Cytotoxicity, Necrosis, Apoptosis, and Cell Death 290
13.5 Factors to Consider to Reduce the Cytotoxic Effects of NP 292
13.6 Conclusions and Future Directions 293
References 294
14 Nanotechnology: Overview of Regulations and Implementations 303
Om V. Singh and Thomas Colonna
14.1 Introduction 303
14.2 Scope of Nanotechnology 305
14.3 Safety Concerns Related to Nanotechnology 310
14.4 Barriers to the Desired Regulatory Framework 311
14.4.1 Regulatory Framework in the United States 312
14.4.2 Global Efforts toward Regulation of Nanotechnology 315
14.5 Biosynthesis of Microbial Bio?]nanoparticles: An Alternative
Production Method 317
14.6 Conclusion 325
References 326
Name index 331
Subject index 333