In the quest to understand and model the healthy or sick human body, re searchers and medical doctors are utilizing more and more quantitative tools and techniques. This trend is pushing the envelope of a new field we call Biomedical Computing, as an exciting frontier among signal processing, pattern recognition, optimization, nonlinear dynamics, computer science and biology, chemistry and medicine. A conference on Biocomputing was held during February 25-27, 2001 at the University of Florida. The conference was sponsored by the Center for Applied Optimization, the Computational…mehr
In the quest to understand and model the healthy or sick human body, re searchers and medical doctors are utilizing more and more quantitative tools and techniques. This trend is pushing the envelope of a new field we call Biomedical Computing, as an exciting frontier among signal processing, pattern recognition, optimization, nonlinear dynamics, computer science and biology, chemistry and medicine. A conference on Biocomputing was held during February 25-27, 2001 at the University of Florida. The conference was sponsored by the Center for Applied Optimization, the Computational Neuroengineering Center, the Biomedical En gineering Program (through a Whitaker Foundation grant), the Brain Institute, the School of Engineering, and the University of Florida Research & Graduate Programs. The conference provided a forum for researchers to discuss and present new directions in Biocomputing. The well-attended three days event was highlighted by the presence of top researchers in the field who presented their work in Biocomputing. This volume contains a selective collection of ref ereed papers based on talks presented at this conference. You will find seminal contributions in genomics, global optimization, computational neuroscience, FMRI, brain dynamics, epileptic seizure prediction and cancer diagnostics. We would like to take the opportunity to thank the sponsors, the authors of the papers, the anonymous referees, and Kluwer Academic Publishers for making the conference successful and the publication of this volume possible. Panos M. Pardalos and Jose C.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
1 Making Sense of Brain Waves: The Most Baffling Frontier in Neuroscience.- 1.1 Introduction.- 1.2 Relations between EEG and 'units'.- 1.3 Three levels of hierarchical coding.- 1.4 Simulation of "background" activity.- 1.5 Microscopic coding and noise.- 1.6 Chaotic attractor stabilization and classification enhancement by noise.- 1.7 Mesoscopic to macroscopic interface.- 1.8 Summary.- References.- 2 Computational and Interpretive Genomics.- References.- 3 Optimized Needle Biopsy Strategies for Prostate Cancer Detection.- 3.1 Reconstruction of the prostate models.- 3.2 The Statistical distribution map.- 3.3 The Optimization problem.- 3.4 Optimized protocols.- 3.5 Conclusions and future work.- References.- 4 Phase Entrainment and Predictability of Epileptic Seizures.- 4.1 Introdution.- 4.2 Nonlinear dynamical measures.- 4.3 Selection of brain sites: optimization.- 4.4 Predictability analysis.- 4.5 Predictability results.- 4.6 Conclusions.- References.- 5 Self-Organizing Maps.- 5.1 The Self-Organizing Map Algorithm.- 5.2 Related Statistical Algorithms: A Qualitative Comparison.- 5.3 Background of Decoding Auditory Recordings.- 5.4 Relating the spike Pattern of Auditory Neurons to the Sound Stimuli using SOM.- 5.5 Conclusions and Discussions.- References.- 6 Finding Transition States Using the LTP Algorithm.- 6.1 Introduction.- 6.2 Theoretical background.- 6.3 The LTP procedure.- 6.4 Results and discussion.- 6.5 Concluding remarks.- References.- 7 A Simple Approximation Algorithm for Nonoverlapping Local Alignments (Weighted Independent Sets of Axis Parallel Rectangles).- 7.1 Introduction.- 7.2 Application of the Two-Phase technique to the IR problem.- 7.3 Concluding remarks.- 8 Combined Application of Global Optimization and Nonlinear Dynamics to Detect StateResetting in Human Epilepsy.- 8.1 Introdution.- 8.2 Nonlinear dynamical measures.- 8.3 Zero-one global optimization.- 8.4 Statistical testing of the resetting hypotheses.- 8.5 Conclusion.- References.- 9 functional Magnetic Resonance Imaging Data Analysis with Information-theoretic Approaches.- 9.1 Information-theoretic approaches.- 9.2 Two alternative divergence measures.- 9.3 fMRI neural activation study.- 9.4 Discussion.- 9.5 Summary.- References.- 10 Yeast SAGE Expression Levels are Related to Calculated mRNA Folding Free Energies.- References.- 11 Sources and Sinks in Medical Image Analysis.- 11.1 Introduction.- 11.2 Divergence-based skeletons.- 11.3 Flux maximizing flows.- 11.4 Conclusions.- References.- 12 Classical and Quantum Controlled Lattices: Self-Organization, Optimiza-tion and Biomedical Applications.- 12.1 Introduction.- 12.2 Hamiltonian models of the cellular dynamatons.- 12.3 Self-organization of the neural networks.- 12.4 Bilinear lattices and epileptic seizures.- 12.5 Quantum model of neural networks.- 12.6 Concluding remarks.- References.- 13 Computational Methods for Epilepsy Diagnosis. Visual Perception and EEG.- 13.1 Introduction.- 13.2 Visual perception tests.- 13.3 Data interpretation methods.- 13.4 EEG analysis.- 13.5 LPC and CHARADE interpretation.- 13.6 Conclusions.- References.- 14 Hardness and the Potential Energy Function in Internal Rotations: A Generalized Symmetry-Adapted Interpolation Procedure.- 14.1 Introduction.- 14.2 Theoretical considerations.- 14.3 Applications.- 14.4 Conclusions.- References.
1 Making Sense of Brain Waves: The Most Baffling Frontier in Neuroscience.- 1.1 Introduction.- 1.2 Relations between EEG and 'units'.- 1.3 Three levels of hierarchical coding.- 1.4 Simulation of "background" activity.- 1.5 Microscopic coding and noise.- 1.6 Chaotic attractor stabilization and classification enhancement by noise.- 1.7 Mesoscopic to macroscopic interface.- 1.8 Summary.- References.- 2 Computational and Interpretive Genomics.- References.- 3 Optimized Needle Biopsy Strategies for Prostate Cancer Detection.- 3.1 Reconstruction of the prostate models.- 3.2 The Statistical distribution map.- 3.3 The Optimization problem.- 3.4 Optimized protocols.- 3.5 Conclusions and future work.- References.- 4 Phase Entrainment and Predictability of Epileptic Seizures.- 4.1 Introdution.- 4.2 Nonlinear dynamical measures.- 4.3 Selection of brain sites: optimization.- 4.4 Predictability analysis.- 4.5 Predictability results.- 4.6 Conclusions.- References.- 5 Self-Organizing Maps.- 5.1 The Self-Organizing Map Algorithm.- 5.2 Related Statistical Algorithms: A Qualitative Comparison.- 5.3 Background of Decoding Auditory Recordings.- 5.4 Relating the spike Pattern of Auditory Neurons to the Sound Stimuli using SOM.- 5.5 Conclusions and Discussions.- References.- 6 Finding Transition States Using the LTP Algorithm.- 6.1 Introduction.- 6.2 Theoretical background.- 6.3 The LTP procedure.- 6.4 Results and discussion.- 6.5 Concluding remarks.- References.- 7 A Simple Approximation Algorithm for Nonoverlapping Local Alignments (Weighted Independent Sets of Axis Parallel Rectangles).- 7.1 Introduction.- 7.2 Application of the Two-Phase technique to the IR problem.- 7.3 Concluding remarks.- 8 Combined Application of Global Optimization and Nonlinear Dynamics to Detect StateResetting in Human Epilepsy.- 8.1 Introdution.- 8.2 Nonlinear dynamical measures.- 8.3 Zero-one global optimization.- 8.4 Statistical testing of the resetting hypotheses.- 8.5 Conclusion.- References.- 9 functional Magnetic Resonance Imaging Data Analysis with Information-theoretic Approaches.- 9.1 Information-theoretic approaches.- 9.2 Two alternative divergence measures.- 9.3 fMRI neural activation study.- 9.4 Discussion.- 9.5 Summary.- References.- 10 Yeast SAGE Expression Levels are Related to Calculated mRNA Folding Free Energies.- References.- 11 Sources and Sinks in Medical Image Analysis.- 11.1 Introduction.- 11.2 Divergence-based skeletons.- 11.3 Flux maximizing flows.- 11.4 Conclusions.- References.- 12 Classical and Quantum Controlled Lattices: Self-Organization, Optimiza-tion and Biomedical Applications.- 12.1 Introduction.- 12.2 Hamiltonian models of the cellular dynamatons.- 12.3 Self-organization of the neural networks.- 12.4 Bilinear lattices and epileptic seizures.- 12.5 Quantum model of neural networks.- 12.6 Concluding remarks.- References.- 13 Computational Methods for Epilepsy Diagnosis. Visual Perception and EEG.- 13.1 Introduction.- 13.2 Visual perception tests.- 13.3 Data interpretation methods.- 13.4 EEG analysis.- 13.5 LPC and CHARADE interpretation.- 13.6 Conclusions.- References.- 14 Hardness and the Potential Energy Function in Internal Rotations: A Generalized Symmetry-Adapted Interpolation Procedure.- 14.1 Introduction.- 14.2 Theoretical considerations.- 14.3 Applications.- 14.4 Conclusions.- References.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826
Wir verwenden Cookies und ähnliche Techniken, um unsere Website für Sie optimal zu gestalten und Ihr Nutzererlebnis fortlaufend zu verbessern. Ihre Einwilligung durch Klicken auf „Alle Cookies akzeptieren“ können Sie jederzeit widerrufen oder anpassen. Bei „Nur notwendige Cookies“ werden die eingesetzten Techniken, mit Ausnahme derer, die für den Betrieb der Seite unerlässlich sind, nicht aktiviert. Um mehr zu erfahren, lesen Sie bitte unsere Datenschutzerklärung.
Notwendige Cookies ermöglichen die Grundfunktionen einer Website (z. B. Seitennavigation). Sie können nicht deaktiviert werden, da eine technische Notwendigkeit besteht.
Dieser Service wird für die grundlegende technische Funktionalität von buecher.de benötigt.
Zweck: Notwendige
Dieser Service wird für die grundlegende technische Funktionalität von Google-Diensten wie z.B. reCaptcha benötigt.
Zweck: Notwendige
Dieser Service wird für die grundlegende technische Funktionalität von Klaro der Cookie-Zustimmung benötigt.
Zweck: Notwendige
Funktionale Cookies sorgen für ein komfortables Nutzererlebnis und speichern z. B. ob Sie eingeloggt bleiben möchten. Diese Arten von Cookies dienen der „Wiedererkennung“, wenn Sie unsere Website besuchen.
Dieser Service wird für die erweiterte Funktionalität von buecher.de verwendet.
Zweck: Funktionale
Dieser Service wird verwendet, um eine sichere Anmeldung bei Google-Diensten zu ermöglichen und Ihre Sitzung zu verwalten.
Zweck: Funktionale
Personalisierung ermöglicht es uns, Inhalte und Anzeigen basierend auf Ihren Interessen und Ihrem Verhalten anzupassen. Dies umfasst die Anpassung von Empfehlungen und anderen Inhalten, um Ihre Erfahrung auf unserer Website zu verbessern.
Dieser Service wird für die Personalisierung der Besucher von buecher.de verwendet.
Zweck: Personalisierung
Wir nutzen Marketing Cookies, um die Relevanz unserer Seiten und der darauf gezeigten Werbung für Sie zu erhöhen und auf Ihre Interessen abzustimmen. Zu diesem Zweck teilen wir die Daten auch mit Drittanbietern.
Dieser Service wird für die Personalisierung von Werbung auf buecher.de verwendet.
Zweck: Marketing
Dieser Service wird genutzt, um zu erfassen, ob Sie über einen Partner aus dem Adtraction-Netzwerk zu uns gelangt sind. Damit kann die Vermittlung korrekt nachvollzogen und abgerechnet werden.
Zweck: Marketing
Dieser Service wird genutzt, um nachzuvollziehen, über welche Partner-Website Sie zu uns gelangt sind. Dadurch können wir sicherstellen, dass Partner für vermittelte Verkäufe korrekt vergütet werden.
Zweck: Marketing
Dieser Service wird genutzt, um zu erfassen, ob Sie über das Preisvergleichsportal billiger.de zu uns gelangt sind. Damit kann die Vermittlung korrekt nachvollzogen und abgerechnet werden.
Zweck: Marketing
Bing ist ein Werbedienst von Microsoft, der es ermöglicht, Werbung auf anderen Websites anzuzeigen. Dabei können personenbezogene Daten wie Nutzungsdaten verarbeitet werden.
Zweck: Marketing
Dieser Service wird genutzt, um personalisierte Produktempfehlungen und Werbung basierend auf Ihrem Surfverhalten bereitzustellen.
Zweck: Marketing
Criteo ist ein Retargeting-Dienst, der es ermöglicht, personalisierte Werbung auf anderen Websites anzuzeigen. Dabei können personenbezogene Daten wie Nutzungsdaten verarbeitet werden.
Zweck: Marketing
Facebook ist ein soziales Netzwerk, das es ermöglicht, mit anderen Nutzern zu kommunizieren und verschiedene Inhalte zu teilen. Dabei können personenbezogene Daten wie Nutzungsdaten verarbeitet werden.
Zweck: Marketing
Getback ist ein Retargeting-Dienst, der es ermöglicht, personalisierte Werbung auf anderen Websites anzuzeigen. Dabei können personenbezogene Daten wie Nutzungsdaten verarbeitet werden.
Zweck: Marketing
Google Ads ist ein Werbedienst von Google, der es ermöglicht, Werbung auf anderen Websites anzuzeigen. Dabei können personenbezogene Daten wie Nutzungsdaten verarbeitet werden.
Zweck: Marketing
Google Analytics ist ein Webanalysedienst, der von Google zur Erhebung von Nutzungsdaten verwendet wird. Diese Daten ermöglichen uns, unsere Website zu optimieren und Ihnen den bestmöglichen Service zu bieten.
Zweck: Marketing
Dieser Service wird genutzt, um personalisierte Werbung anzuzeigen. Dadurch können wir Ihnen relevante Angebote und Empfehlungen bereitstellen.
Zweck: Marketing
Dieser Service wird genutzt, um personalisierte Inhalte und gesponserte Empfehlungen bereitzustellen, die auf Ihrem bisherigen Nutzungsverhalten basieren.
Zweck: Marketing
RTB House ist ein Retargeting-Dienst, der es ermöglicht, personalisierte Werbung auf anderen Websites anzuzeigen. Dabei können personenbezogene Daten wie Nutzungsdaten verarbeitet werden. Weitere Informationen finden Sie in der RTB House-Datenschutzerklärung.
Zweck: Marketing
Dieser Service wird genutzt, um nachvollziehen zu können, über welchen Partner Sie auf unsere Website gelangt sind. So kann die Vergütung von Partnern bei erfolgreichen Vermittlungen korrekt erfolgen.
Zweck: Marketing
Xandr ist ein Werbedienst von AT&T, der es ermöglicht, Werbung auf anderen Websites anzuzeigen. Dabei können personenbezogene Daten wie Nutzungsdaten verarbeitet werden.
Zweck: Marketing
Mit diesem Schalter können Sie alle Dienste aktivieren oder deaktivieren.