73,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
37 °P sammeln
  • Broschiertes Buch

This book is a thoroughly up-to-date treatment of all the available technologies for biomass conversion. Each chapter looks at the viability and implementation of each technology with examples of existing equipment and plants. In addition, the text addresses the economics of biomass processing. The book could also be used as a supplementary text for senior undergraduate courses on biomass processing. Features: Provides a concise overview of all currently available biomass processing technologies Includes relatively recent technologies such as Biochar Contains numerous industry examples and…mehr

Produktbeschreibung
This book is a thoroughly up-to-date treatment of all the available technologies for biomass conversion. Each chapter looks at the viability and implementation of each technology with examples of existing equipment and plants. In addition, the text addresses the economics of biomass processing. The book could also be used as a supplementary text for senior undergraduate courses on biomass processing. Features: Provides a concise overview of all currently available biomass processing technologies Includes relatively recent technologies such as Biochar Contains numerous industry examples and case studies Covers the science and technology behind biomass processing as well as the economics, including the effect of carbon taxation
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Vladimir Strezov is an associate professor and environmental science program director at the Faculty of Science, Macquarie University, Australia. He earned his PhD in chemical engineering at the University of Newcastle, Australia, where he jointly worked with the pyrometallurgy research team of BHP Research Laboratories. Dr. Strezov's current research projects are concerned with the improvement of energy efficiency and the reduction of emissions in minerals processing, electricity generation and production of biofuels. He has established close links with several primary industries leading to successful joint projects in the field of energy and sustainability. He currently manages a laboratory for thermal and environmental processing funded in collaboration with the Rio Tinto Group. Tim J. Evans is an adjunct professor at the Faculty of Science, Macquarie University and principal engineer at Rio Tinto. He has a long association with Australian primary industries such as BHP Billiton, HIsmelt and Rio Tinto. He holds a PhD in chemical engineering from the University of Newcastle. Dr. Evans' expertise is in energy transformation and mineral processing, specifically high-temperature industrial processing.