Application of polymers from renewable resources - also identified as biopolymers - has a large potential market due to the current emphasis on sustainable technology. For optimal R&D achievements and hence benefits from these market opportunities, it is essential to combine the expertise available in the vast range ofdifferent disciplines in biopolymer science and technology. The International Centre of Biopolymer Technology - ICBT - has been created with support from the European Commission to facilitate co operation and the exchange of scientific knowledge between industries, universities…mehr
Application of polymers from renewable resources - also identified as biopolymers - has a large potential market due to the current emphasis on sustainable technology. For optimal R&D achievements and hence benefits from these market opportunities, it is essential to combine the expertise available in the vast range ofdifferent disciplines in biopolymer science and technology. The International Centre of Biopolymer Technology - ICBT - has been created with support from the European Commission to facilitate co operation and the exchange of scientific knowledge between industries, universities and other research groups. One of the activities to reach these objectives, is the organisation ofa conference on Biopolymer Technology. In September 1999, the first international conference on Biopolymer Technology was held in Coimbra, Portugal. Because of its success - both scientifically and socially - and because ofthe many contacts that resulted in exchange missions or other ICBT activities, it was concluded that a second conference on Biopolymer Technology was justified. This second conference was held in Ischia, Italy in October 2000. And again, the scientific programme contained a broad spectrum ofpresentations in a range of fields such as biopolymer synthesis, modification, technology, applications, material testing and analytical methods.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
1. Biopolymers and Renewable Resources.- 1 Potato Starch Based Resilient Thermoplastic Foams.- 2 The New Starch.- 3 Structural Materials Made of Renewable Resources (Biocomposites).- 4 Isolation, Characterisation and Material Properties of 4-O-Methylglucuronoxylan from Aspen.- 5 An Original Method of Esterification of Cellulose and Starch.- 2. Biopolymer Technology and Applications.- 6 Biopolymers and Artificial Biopolymers in Biomedical Applications, an Overview.- 7 Novel Synthesis of Biopolymers and Their Medical Applications.- 8 Composite Films Based on Poly(Vinylalcohol) and Lignocellulosic Fibres: Preparation and Characterizations.- 9 Composite Materials Based on Gelatin and Fillers from Renewable Resources: Thermal and Mechanical Properties.- 10 Properties of PHAs and Their Correlation to Fermentation Conditions.- 3. (Bio)Synthesis and Modifications.- 11 Synthesis of Biopolymers.- 12 The Production of Poly-3-Hydroxybutyrate-Co-3-Hydroxyvalerate with Peseudomonas Cepacia ATCC 17759 on Various Carbon Sources.- 13 Production of Poly-3-Hydroxybutyrate-Co-3-Hydroxyvalerate with Alcaligenes Latus DSM 1124 on Various Carbon Sources.- 14 Biosynthesis of Polyhdroxyalkanoates and Their Regulation in Rhizobia.- 15 Polyhydroxyalkanoates Production by Activated Sludge.- 16 Controlled Synthesis of Biodegradable Poly(Ester)s.- 17 Transglucosylation and Hydrolysis Activity of Gluconobacter Oxydans Dextran Dextrinase with Several Donor and Acceptor Substrates.- 18 New Highly Functionalised Starch Derivatives.- 19 Preparation of Dextran-Based Macromolecular Chelates for Magnetic Resonance Angiography.- 20 Fatty Esterification of Plant Proteins.- 21 Chemical Modification of Wheat Gluten.- 22 Enzymatic Crosslinking Enhance Film Properties of Deamidated Gluten.- 23 Laccase - AUseful Enzyme for Modification of Biopolymers.- 4. Material Testing and Analytical Methods.- 24 Biodegradation of Polymeric Materials: An Overview of Available Testing Methods.- 25 Comparison of Test Systems for the Examination of the Fermentability of Biodegradable Materials.- 26 Structure-Biodegradability Relationship of Polyesters.- 27 Biodegradation of the Blends of Atactic Poly[(R,S)-3-Hydroxybutanoic Acid] in Natural Environments.- 28 Biodegradable Mater Bi Attacked by Trypsin.- 29 Biodegradation of Poly(Vinyl Alcohol)/Poly (ß-Hydroxybutyrate) Graft Copolymers and Relevant Blends.- 30 Structural Studies of Natural and Bio-Inspired Polyesters by Multistage Mass Spectrometry.- 31 Adsorption Studies of Humidity Presented by an Unbleached Kraft Woodpulp.- 32 Comparison of Quantification Methods for the Condensed Tannin Content of Extracts of Pinus Pinaster Bark.- 33 The Role of Life-Cycle-Assessment for Biodegradable Products: Bags and Loose Fills.
1. Biopolymers and Renewable Resources.- 1 Potato Starch Based Resilient Thermoplastic Foams.- 2 The New Starch.- 3 Structural Materials Made of Renewable Resources (Biocomposites).- 4 Isolation, Characterisation and Material Properties of 4-O-Methylglucuronoxylan from Aspen.- 5 An Original Method of Esterification of Cellulose and Starch.- 2. Biopolymer Technology and Applications.- 6 Biopolymers and Artificial Biopolymers in Biomedical Applications, an Overview.- 7 Novel Synthesis of Biopolymers and Their Medical Applications.- 8 Composite Films Based on Poly(Vinylalcohol) and Lignocellulosic Fibres: Preparation and Characterizations.- 9 Composite Materials Based on Gelatin and Fillers from Renewable Resources: Thermal and Mechanical Properties.- 10 Properties of PHAs and Their Correlation to Fermentation Conditions.- 3. (Bio)Synthesis and Modifications.- 11 Synthesis of Biopolymers.- 12 The Production of Poly-3-Hydroxybutyrate-Co-3-Hydroxyvalerate with Peseudomonas Cepacia ATCC 17759 on Various Carbon Sources.- 13 Production of Poly-3-Hydroxybutyrate-Co-3-Hydroxyvalerate with Alcaligenes Latus DSM 1124 on Various Carbon Sources.- 14 Biosynthesis of Polyhdroxyalkanoates and Their Regulation in Rhizobia.- 15 Polyhydroxyalkanoates Production by Activated Sludge.- 16 Controlled Synthesis of Biodegradable Poly(Ester)s.- 17 Transglucosylation and Hydrolysis Activity of Gluconobacter Oxydans Dextran Dextrinase with Several Donor and Acceptor Substrates.- 18 New Highly Functionalised Starch Derivatives.- 19 Preparation of Dextran-Based Macromolecular Chelates for Magnetic Resonance Angiography.- 20 Fatty Esterification of Plant Proteins.- 21 Chemical Modification of Wheat Gluten.- 22 Enzymatic Crosslinking Enhance Film Properties of Deamidated Gluten.- 23 Laccase - AUseful Enzyme for Modification of Biopolymers.- 4. Material Testing and Analytical Methods.- 24 Biodegradation of Polymeric Materials: An Overview of Available Testing Methods.- 25 Comparison of Test Systems for the Examination of the Fermentability of Biodegradable Materials.- 26 Structure-Biodegradability Relationship of Polyesters.- 27 Biodegradation of the Blends of Atactic Poly[(R,S)-3-Hydroxybutanoic Acid] in Natural Environments.- 28 Biodegradable Mater Bi Attacked by Trypsin.- 29 Biodegradation of Poly(Vinyl Alcohol)/Poly (ß-Hydroxybutyrate) Graft Copolymers and Relevant Blends.- 30 Structural Studies of Natural and Bio-Inspired Polyesters by Multistage Mass Spectrometry.- 31 Adsorption Studies of Humidity Presented by an Unbleached Kraft Woodpulp.- 32 Comparison of Quantification Methods for the Condensed Tannin Content of Extracts of Pinus Pinaster Bark.- 33 The Role of Life-Cycle-Assessment for Biodegradable Products: Bags and Loose Fills.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826