Accessible but rigorous, this outstanding text encompasses all of elementary abstract algebra's standard topics. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. 1990 edition.
Accessible but rigorous, this outstanding text encompasses all of elementary abstract algebra's standard topics. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. 1990 edition.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Charles C. Pinter is Professor Emeritus of Mathematics at Bucknell University.
Inhaltsangabe
Chapter 1 Why Abstract Algebra Chapter 2 Operations Chapter 3 The Definition of Groups Chapter 4 Elementary Properties of Groups Chapter 5 Subgroups Chapter 6 Functions Chapter 7 Groups of Permutations Chapter 8 Permutations of a Finite Set Chapter 9 Isomorphism Chapter 10 Order of Group Elements Chapter 11 Cyclic Groups Chapter 12 Partitions and Equivalence Relations Chapter 13 Counting Cosets Chapter 14 Homomorphism Chapter 15 Quotient Groups Chapter 16 The Fundamental Homomorphism Theorem Chapter 17 Rings: Definitions and Elementary Properties Chapter 18 Ideals and Homomorphism Chapter 19 Quotient Rings Chapter 20 Integral Domains Chapter 21 The Integers Chapter 22 Factoring into Primes Chapter 23 Elements of Number Theiory (Optional) Chapter 24 Rings of Polynomials Chapter 25 Factoring Polynomials Chapter 26 Substitution in Polynomials Chapter 27 Extensions of Fields Chapter 28 Vector Spaces Chapter 29 Degrees of Field Extensions Chapter 30 Ruler and Compass Chapter 31 Galois Theory: Preamble Chapter 32 Galois Theory: The Heart of the Matter Chapter 33 Solving Equations by Radicals Appendix A Review of Set Theory Appendix B Review of the Integers Appendix C Review of Mathematical Integers Answers to Selected Exercises Index
Chapter 1 Why Abstract Algebra Chapter 2 Operations Chapter 3 The Definition of Groups Chapter 4 Elementary Properties of Groups Chapter 5 Subgroups Chapter 6 Functions Chapter 7 Groups of Permutations Chapter 8 Permutations of a Finite Set Chapter 9 Isomorphism Chapter 10 Order of Group Elements Chapter 11 Cyclic Groups Chapter 12 Partitions and Equivalence Relations Chapter 13 Counting Cosets Chapter 14 Homomorphism Chapter 15 Quotient Groups Chapter 16 The Fundamental Homomorphism Theorem Chapter 17 Rings: Definitions and Elementary Properties Chapter 18 Ideals and Homomorphism Chapter 19 Quotient Rings Chapter 20 Integral Domains Chapter 21 The Integers Chapter 22 Factoring into Primes Chapter 23 Elements of Number Theiory (Optional) Chapter 24 Rings of Polynomials Chapter 25 Factoring Polynomials Chapter 26 Substitution in Polynomials Chapter 27 Extensions of Fields Chapter 28 Vector Spaces Chapter 29 Degrees of Field Extensions Chapter 30 Ruler and Compass Chapter 31 Galois Theory: Preamble Chapter 32 Galois Theory: The Heart of the Matter Chapter 33 Solving Equations by Radicals Appendix A Review of Set Theory Appendix B Review of the Integers Appendix C Review of Mathematical Integers Answers to Selected Exercises Index
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497