Carlos A. Brebbia, J. C. F. Telles, Luiz C. Wrobel
Boundary Element Techniques
Theory and Applications in Engineering
Carlos A. Brebbia, J. C. F. Telles, Luiz C. Wrobel
Boundary Element Techniques
Theory and Applications in Engineering
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
VI SOCRATES: I think that we ought to stress that we will write only about things that we have first hand experience in, in a coherent way that will be useful to engineers and other scientists and stressing the formulation without being too mathematical. We should write with integrity and honesty, giving reference to other authors where reference is due, but avoiding mentioning everybody just to be certain that our book is widely advertised. Above all, the book should be clear and useful. PLATO: I think we should include a good discussion of fundamental ideas, of how integral equations are…mehr
Andere Kunden interessierten sich auch für
- Time-dependent and Vibration Problems83,99 €
- J. C. F. TellesThe Boundary Element Method Applied to Inelastic Problems83,99 €
- W. S. VenturiniBoundary Element Method in Geomechanics83,99 €
- Janusz DyszlewiczMicropolar Theory of Elasticity125,99 €
- D. B. InghamBoundary Integral Equation Analyses of Singular, Potential, and Biharmonic Problems83,99 €
- Siamak AminiCoupled Boundary and Finite Element Methods for the Solution of the Dynamic Fluid-Structure Interaction Problem83,99 €
- G.D. Manolis / D. Polyzos (ed.)Recent Advances in Boundary Element Methods110,99 €
-
-
-
VI SOCRATES: I think that we ought to stress that we will write only about things that we have first hand experience in, in a coherent way that will be useful to engineers and other scientists and stressing the formulation without being too mathematical. We should write with integrity and honesty, giving reference to other authors where reference is due, but avoiding mentioning everybody just to be certain that our book is widely advertised. Above all, the book should be clear and useful. PLATO: I think we should include a good discussion of fundamental ideas, of how integral equations are formed, pointing out that they are like two dimensional shadows of three dimensional objects, ... SOCRATES: Stop there! Remember you are not 'the' Plato! PLATO: Sorry, I was carried away. ARISTOTLE: I think that the book should have many applications so that the reader can learn by looking at them how to use the method. SOCRATES: I agree. But we should be careful. It is easy to include many illustra tions and examples in a book in order to disguise its meagre contents. All examples should be relevant. ARISTOTLE: And we should also include a full computer program to give the reader if so he wishes, a working experience of the technique.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 978-3-642-48862-7
- Softcover reprint of the original 1st ed. 1984
- Seitenzahl: 484
- Erscheinungstermin: 19. April 2012
- Englisch
- Abmessung: 244mm x 170mm x 27mm
- Gewicht: 828g
- ISBN-13: 9783642488627
- ISBN-10: 3642488625
- Artikelnr.: 36114115
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 978-3-642-48862-7
- Softcover reprint of the original 1st ed. 1984
- Seitenzahl: 484
- Erscheinungstermin: 19. April 2012
- Englisch
- Abmessung: 244mm x 170mm x 27mm
- Gewicht: 828g
- ISBN-13: 9783642488627
- ISBN-10: 3642488625
- Artikelnr.: 36114115
1 Approximate Methods.- 1.1. Introduction.- 1.2. Basic Definitions.- 1.3. Approximate Solutions.- 1.4. Method of Weighted Residuals.- 1.4.1. The Collocation Method.- 1.4.2. Method of Collocation by Subregions.- 1.5. Method of Galerkin.- 1.6. Weak Formulations.- 1.7. Inverse Problem and Boundary Solutions.- 1.8. Classification of Approximate Methods.- References.- 2 Potential Problems.- 2.1. Introduction.- 2.2. Elements of Potential Theory.- 2.3. Indirect Formulation.- 2.4. Direct Formulation.- 2.5. Boundary Element Method.- 2.6. Two-Dimensional Problems.- 2.6.1. Source Formulation.- 2.7. Poisson Equation.- 2.8. Subregions.- 2.9. Orthotropy and Anisotropy.- 2.10. Infinite Regions.- 2.11. Special Fundamental Solutions.- 2.12. Three-Dimensional Problems.- 2.13. Axisymmetric Problems.- 2.14. Axisymmetric Problems with Arbitrary Boundary Conditions.- 2.15. Nonlinear Materials and Boundary Conditions.- 2.15.1. Nonlinear Boundary Conditions.- References.- 3 Interpolation Functions.- 3.1. Introduction.- 3.2. Linear Elements for Two-Dimensional Problems.- 3.3. Quadratic and Higher-Order Elements.- 3.4. Boundary Elements for Three-Dimensional Problems.- 3.4.1. Quadrilateral Elements.- 3.4.2. Higher-Order Quadrilateral Elements.- 3.4.3. Lagrangian Quadrilateral Elements.- 3.4.4. Triangular Elements.- 3.4.5. Higher-Order Triangular Elements.- 3.5. Three-Dimensional Cell Elements.- 3.5.1. Tetrahedron.- 3.5.2. Cube.- 3.6. Discontinuous Boundary Elements.- 3.7. Order of Interpolation Functions.- References.- 4 Diffusion Problems.- 4.1. Introduction.- 4.2. Laplace Transforms.- 4.3. Coupled Boundary Element - Finite Difference Methods.- 4.4. Time-Dependent Fundamental Solutions.- 4.5. Two-Dimensional Problems.- 4.5.1. Constant Time Interpolation.- 4.5.2. Linear Time Interpolation.-4.5.3. Quadratic Time Interpolation.- 4.5.4. Space Integration.- 4.6. Time-Marching Schemes.- 4.7. Three-Dimensional Problems.- 4.8. Axisymmetric Problems.- 4.9. Nonlinear Diffusion.- References.- 5 Elastostatics.- 5.1. Introduction to the Theory of Elasticity.- 5.1.1. Initial Stresses or Initial Strains.- 5.2. Fundamental Integral Statement.- 5.2.1. Somigliana Identity.- 5.3. Fundamental Solutions.- 5.4. Stresses at Internal Points.- 5.5. Boundary Integral Equation.- 5.6. Infinite and Semi-Infinite Regions.- 5.7. Numerical Implementation.- 5.8. Boundary Elements.- 5.9. System of Equations.- 5.10. Stresses and Displacements Inside the Body.- 5.11. Stresses on the Boundary.- 5.12. Surface Traction Discontinuities.- 5.13. Two-Dimensional Elasticity.- 5.14. Body Forces.- 5.14.1. Gravitational Loads.- 5.14.2. Centrifugal Load.- 5.14.3. Thermal Loading.- 5.15. Axisymmetric Problems.- 5.15.1. Extension to Nonaxisymmetric Boundary Values.- 5.16. Anisotropy.- References.- 6 Boundary Integral Formulation for Inelastic Problems.- 6.1. Introduction.- 6.2. Inelastic Behavior of Materials.- 6.3. Governing Equations.- 6.4. Boundary Integral Formulation.- 6.5. Internal Stresses.- 6.6. Alternative Boundary Element Formulations.- 6.6.1. Initial Strain.- 6.6.2. Initial Stress.- 6.6.3. Fictitious Tractions and Body Forces.- 6.7. Half-Plane Formulations.- 6.8. Spatial Discretization.- 6.9. Internal Cells.- 6.10. Axisymmetric Case.- References.- 7 Elastoplasticity.- 7.1. Introduction.- 7.2. Some Simple Elastoplastic Relations.- 7.3. Initial Strain: Numerical Solution Technique.- 7.3.1. Examples - Initial Strain Formulation.- 7.4. General Elastoplastic Stress-Strain Relations.- 7.5. Initial Stress: Outline of Solution Techniques.- 7.5.1. Examples: Kelvin Implementation.- 7.5.2. Examples:Half-Plane Implementation.- 7.6. Comparison with Finite Elements.- References.- 8 Other Nonlinear Material Problems.- 8.1. Introduction.- 8.2. Rate-Dependent Constitutive Equations.- 8.3. Solution Technique: Viscoplasticity.- 8.4. Examples: Time-Dependent Problems.- 8.5. No-Tension Materials.- References.- 9 Plate Bending.- 9.1. Introduction.- 9.2. Governing Equations.- 9.3. Integral Equations.- 9.3.1. Other Fundamental Solutions.- 9.4. Applications.- References.- 10 Wave Propagation Problems.- 10.1. Introduction.- 10.2. Three-Dimensional Water Wave Propagation Problems.- 10.3. Vertical Axisymmetric Bodies.- 10.4. Horizontal Cylinders of Arbitrary Section.- 10.5. Vertical Cylinders of Arbitrary Section.- 10.6. Transient Scalar Wave Equation.- 10.7. Three-Dimensional Problems: The Retarded Potential.- 10.8. Two-Dimensional Problems.- References.- 11 Vibrations.- 11.1. Introduction.- 11.2. Governing Equations.- 11.3. Time-Dependent Integral Formulation.- 11.4. Laplace Transform Formulation.- 11.5. Steady-State Elastodynamics.- 11.6. Free Vibrations.- References.- 12 Further Applications in Fluid Mechanics.- 12.1. Introduction.- 12.2. Transient Groundwater Flow.- 12.3. Moving Interface Problems.- 12.4. Axisymmetric Bodies in Cross Flow.- 12.5. Slow Viscous Flow (Stokes Flow).- 12.6. General Viscous Flow.- 12.6.1. Steady Problems.- 12.6.2. Transient Problems.- References.- 13 Coupling of Boundary Elements with Other Methods.- 13.1. Introduction.- 13.2. Coupling of Finite Element and Boundary Element Solutions.- 13.2.1. The Energy Approach.- 13.3. Alternative Approach.- 13.4. Internal Fluid Problems.- 13.4.1. Free-Surface Boundary Condition.- 13.4.2. Extension to Compressible Fluid.- 13.5. Approximate Boundary Elements.- 13.6. Approximate Finite Elements.- References.- 14 Computer Program for Two-Dimensional Elastostatics.- 14.1. Introduction.- 14.2. Main Program and Data Structure.- 14.3. Subroutine INPUT.- 14.4. Subroutine MATRX.- 14.5. Subroutine FUNC.- 14.6. Subroutine SLNPD.- 14.7. Subroutine OUTPT.- 14.8. Subroutine FENC.- 14.9. Examples.- 14.9.1. Square Plate.- 14.9.2. Cylindrical Cavity Problem.- References.- Appendix A Numerical Integration Formulas.- A.1. Introduction.- A.2. Standard Gaussian Quadrature.- A.2.1. One-Dimensional Quadrature.- A.2.2. Two- and Three-Dimensional Quadrature for Rectangles and Rectangular Hexahedra.- A.2.3. Triangular Domain.- A.3. Computation of Singular Integrals.- A.3.1. One-Dimensional Logarithmic Gaussian Quadrature Formulas.- A.3.3. Numerical Evaluation of Cauchy Principal Values.- References.- Appendix B Semi-Infinite Fundamental Solutions.- B.1. Half-Space.- B.2. Half-Plane.- References.- Appendix C Some Particular Expressions for Two-Dimensional Inelastic Problems.
1 Approximate Methods.- 1.1. Introduction.- 1.2. Basic Definitions.- 1.3. Approximate Solutions.- 1.4. Method of Weighted Residuals.- 1.4.1. The Collocation Method.- 1.4.2. Method of Collocation by Subregions.- 1.5. Method of Galerkin.- 1.6. Weak Formulations.- 1.7. Inverse Problem and Boundary Solutions.- 1.8. Classification of Approximate Methods.- References.- 2 Potential Problems.- 2.1. Introduction.- 2.2. Elements of Potential Theory.- 2.3. Indirect Formulation.- 2.4. Direct Formulation.- 2.5. Boundary Element Method.- 2.6. Two-Dimensional Problems.- 2.6.1. Source Formulation.- 2.7. Poisson Equation.- 2.8. Subregions.- 2.9. Orthotropy and Anisotropy.- 2.10. Infinite Regions.- 2.11. Special Fundamental Solutions.- 2.12. Three-Dimensional Problems.- 2.13. Axisymmetric Problems.- 2.14. Axisymmetric Problems with Arbitrary Boundary Conditions.- 2.15. Nonlinear Materials and Boundary Conditions.- 2.15.1. Nonlinear Boundary Conditions.- References.- 3 Interpolation Functions.- 3.1. Introduction.- 3.2. Linear Elements for Two-Dimensional Problems.- 3.3. Quadratic and Higher-Order Elements.- 3.4. Boundary Elements for Three-Dimensional Problems.- 3.4.1. Quadrilateral Elements.- 3.4.2. Higher-Order Quadrilateral Elements.- 3.4.3. Lagrangian Quadrilateral Elements.- 3.4.4. Triangular Elements.- 3.4.5. Higher-Order Triangular Elements.- 3.5. Three-Dimensional Cell Elements.- 3.5.1. Tetrahedron.- 3.5.2. Cube.- 3.6. Discontinuous Boundary Elements.- 3.7. Order of Interpolation Functions.- References.- 4 Diffusion Problems.- 4.1. Introduction.- 4.2. Laplace Transforms.- 4.3. Coupled Boundary Element - Finite Difference Methods.- 4.4. Time-Dependent Fundamental Solutions.- 4.5. Two-Dimensional Problems.- 4.5.1. Constant Time Interpolation.- 4.5.2. Linear Time Interpolation.-4.5.3. Quadratic Time Interpolation.- 4.5.4. Space Integration.- 4.6. Time-Marching Schemes.- 4.7. Three-Dimensional Problems.- 4.8. Axisymmetric Problems.- 4.9. Nonlinear Diffusion.- References.- 5 Elastostatics.- 5.1. Introduction to the Theory of Elasticity.- 5.1.1. Initial Stresses or Initial Strains.- 5.2. Fundamental Integral Statement.- 5.2.1. Somigliana Identity.- 5.3. Fundamental Solutions.- 5.4. Stresses at Internal Points.- 5.5. Boundary Integral Equation.- 5.6. Infinite and Semi-Infinite Regions.- 5.7. Numerical Implementation.- 5.8. Boundary Elements.- 5.9. System of Equations.- 5.10. Stresses and Displacements Inside the Body.- 5.11. Stresses on the Boundary.- 5.12. Surface Traction Discontinuities.- 5.13. Two-Dimensional Elasticity.- 5.14. Body Forces.- 5.14.1. Gravitational Loads.- 5.14.2. Centrifugal Load.- 5.14.3. Thermal Loading.- 5.15. Axisymmetric Problems.- 5.15.1. Extension to Nonaxisymmetric Boundary Values.- 5.16. Anisotropy.- References.- 6 Boundary Integral Formulation for Inelastic Problems.- 6.1. Introduction.- 6.2. Inelastic Behavior of Materials.- 6.3. Governing Equations.- 6.4. Boundary Integral Formulation.- 6.5. Internal Stresses.- 6.6. Alternative Boundary Element Formulations.- 6.6.1. Initial Strain.- 6.6.2. Initial Stress.- 6.6.3. Fictitious Tractions and Body Forces.- 6.7. Half-Plane Formulations.- 6.8. Spatial Discretization.- 6.9. Internal Cells.- 6.10. Axisymmetric Case.- References.- 7 Elastoplasticity.- 7.1. Introduction.- 7.2. Some Simple Elastoplastic Relations.- 7.3. Initial Strain: Numerical Solution Technique.- 7.3.1. Examples - Initial Strain Formulation.- 7.4. General Elastoplastic Stress-Strain Relations.- 7.5. Initial Stress: Outline of Solution Techniques.- 7.5.1. Examples: Kelvin Implementation.- 7.5.2. Examples:Half-Plane Implementation.- 7.6. Comparison with Finite Elements.- References.- 8 Other Nonlinear Material Problems.- 8.1. Introduction.- 8.2. Rate-Dependent Constitutive Equations.- 8.3. Solution Technique: Viscoplasticity.- 8.4. Examples: Time-Dependent Problems.- 8.5. No-Tension Materials.- References.- 9 Plate Bending.- 9.1. Introduction.- 9.2. Governing Equations.- 9.3. Integral Equations.- 9.3.1. Other Fundamental Solutions.- 9.4. Applications.- References.- 10 Wave Propagation Problems.- 10.1. Introduction.- 10.2. Three-Dimensional Water Wave Propagation Problems.- 10.3. Vertical Axisymmetric Bodies.- 10.4. Horizontal Cylinders of Arbitrary Section.- 10.5. Vertical Cylinders of Arbitrary Section.- 10.6. Transient Scalar Wave Equation.- 10.7. Three-Dimensional Problems: The Retarded Potential.- 10.8. Two-Dimensional Problems.- References.- 11 Vibrations.- 11.1. Introduction.- 11.2. Governing Equations.- 11.3. Time-Dependent Integral Formulation.- 11.4. Laplace Transform Formulation.- 11.5. Steady-State Elastodynamics.- 11.6. Free Vibrations.- References.- 12 Further Applications in Fluid Mechanics.- 12.1. Introduction.- 12.2. Transient Groundwater Flow.- 12.3. Moving Interface Problems.- 12.4. Axisymmetric Bodies in Cross Flow.- 12.5. Slow Viscous Flow (Stokes Flow).- 12.6. General Viscous Flow.- 12.6.1. Steady Problems.- 12.6.2. Transient Problems.- References.- 13 Coupling of Boundary Elements with Other Methods.- 13.1. Introduction.- 13.2. Coupling of Finite Element and Boundary Element Solutions.- 13.2.1. The Energy Approach.- 13.3. Alternative Approach.- 13.4. Internal Fluid Problems.- 13.4.1. Free-Surface Boundary Condition.- 13.4.2. Extension to Compressible Fluid.- 13.5. Approximate Boundary Elements.- 13.6. Approximate Finite Elements.- References.- 14 Computer Program for Two-Dimensional Elastostatics.- 14.1. Introduction.- 14.2. Main Program and Data Structure.- 14.3. Subroutine INPUT.- 14.4. Subroutine MATRX.- 14.5. Subroutine FUNC.- 14.6. Subroutine SLNPD.- 14.7. Subroutine OUTPT.- 14.8. Subroutine FENC.- 14.9. Examples.- 14.9.1. Square Plate.- 14.9.2. Cylindrical Cavity Problem.- References.- Appendix A Numerical Integration Formulas.- A.1. Introduction.- A.2. Standard Gaussian Quadrature.- A.2.1. One-Dimensional Quadrature.- A.2.2. Two- and Three-Dimensional Quadrature for Rectangles and Rectangular Hexahedra.- A.2.3. Triangular Domain.- A.3. Computation of Singular Integrals.- A.3.1. One-Dimensional Logarithmic Gaussian Quadrature Formulas.- A.3.3. Numerical Evaluation of Cauchy Principal Values.- References.- Appendix B Semi-Infinite Fundamental Solutions.- B.1. Half-Space.- B.2. Half-Plane.- References.- Appendix C Some Particular Expressions for Two-Dimensional Inelastic Problems.