192,59 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Broschiertes Buch

This is the second edition of the book which has two additional new chapters on Maxwell's equations as well as a section on properties of solution spaces of Maxwell's equations and their trace spaces. These two new chapters, which summarize the most up-to-date results in the literature for the Maxwell's equations, are sufficient enough to serve as a self-contained introductory book on the modern mathematical theory of boundary integral equations in electromagnetics.
The book now contains 12 chapters and is divided into two parts. The first six chapters present modern mathematical theory of
…mehr

Produktbeschreibung
This is the second edition of the book which has two additional new chapters on Maxwell's equations as well as a section on properties of solution spaces of Maxwell's equations and their trace spaces. These two new chapters, which summarize the most up-to-date results in the literature for the Maxwell's equations, are sufficient enough to serve as a self-contained introductory book on the modern mathematical theory of boundary integral equations in electromagnetics.

The book now contains 12 chapters and is divided into two parts. The first six chapters present modern mathematical theory of boundary integral equations that arise in fundamental problems in continuum mechanics and electromagnetics based on the approach of variational formulations of the equations. The second six chapters present an introduction to basic classical theory of the pseudo-differential operators. The aforementioned corresponding boundary integral operators can now be recast as pseudo-differential operators. These serve as concrete examples that illustrate the basic ideas of how one may apply the theory of pseudo-differential operators and their calculus to obtain additional properties for the corresponding boundary integral operators. These two different approaches are complementary to each other. Both serve as the mathematical foundation of the boundary element methods, which have become extremely popular and efficient computational tools for boundary problems in applications.

This book contains a wide spectrum of boundary integral equations arising in fundamental problems in continuum mechanics and electromagnetics. The book is a major scholarly contribution to the modern approaches of boundary integral equations, and should be accessible and useful to a large community of advanced graduate students and researchers in mathematics, physics, and engineering.

Autorenporträt
George C. Hsiao received a bachelor's degree in Civil Engineering from National Taiwan University, a master's degree from Carnegie Institute of Technology in the same field, and a doctorate degree in Mathematics from Carnegie Mellon University. He is now the Carl J. Rees Professor of Mathematics Emeritus at the University of Delaware from which he retired in September 2012 after 43 years on the faculty of the Department of Mathematical Sciences. His primary research interests are integral equations and partial differential equations with their applications in mathematical physics and continuum mechanics. Wolfgang L. Wendland, now Professor Emeritus at the University Stuttgart was studying mechanical engineering and mathematics at the Technical University Berlin and became Full Professor for Mathematics 1970-1986 at the TU Darmstadt and 1986-2005 at the University Stuttgart. His research interests are in Applied Mathematics with emphasis on partial differential equations and integral equations as well as approximation and numerical methods with applications to continuum mechanics of flow and elasticity problems. Both authors are well known for their fundamental work on boundary integral equations and related topics.
Rezensionen
"This second edition also expands the area of applicability of boundary integral equations ... . The authors are outstanding and well known researchers in the mathematical foundations of numerical methods, mainly the boundary element methods, for solving various boundary integral equations. The multitude of their original results is the basis of this impressive volume which, however, requires a fairly high level of mathematical knowledge in order to be useful." (Calin Ioan Gheorghiu, zbMATH 1477.65007, 2022)
From the reviews:

"The main goal of this book is to explain the mathematical foundation of the boundary element methods (BEMs) ... . The BEM is well developed and widely used by engineers and scientists in applied mathematical computations for 40 years. ... The book will be helpful not only for mathematicians who want to become familiar with the BIE but also for users of BEMs who want to understand mathematical background of the computational method."

(Vladimir Sládek, Zentralblatt MATH, Vol. 1157, 2009)

"This book has been in preparation for many years: the care in its composition is evident. ... The development of ... analytical framework occupies the major part of this impressive book. ... There are 10 chapters and a bibliography of 325 items. ... In summary, this is an important scholarly work on the modern mathematical theory of boundary integral equations."

(Paul Andrew Martin, Mathematical Reviews, Issue 2009 i)