30,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
15 °P sammeln
  • Broschiertes Buch

This book explores boundary value problems for Riemann-Liouville fractional dynamic equations on arbitrary time scales as well as the shifting problem on the whole time scale. The author includes an introductory overview of fractional dynamic calculus on time scales. The book also introduces the Laplace transform on arbitrary time scales, including the bilateral Laplace transform, the Laplace transform of power series, and a deduction of an inverse formula. The author then discusses the generalized convolutions of functions on arbitrary time scales and the shifting problem for existence of…mehr

Produktbeschreibung
This book explores boundary value problems for Riemann-Liouville fractional dynamic equations on arbitrary time scales as well as the shifting problem on the whole time scale. The author includes an introductory overview of fractional dynamic calculus on time scales. The book also introduces the Laplace transform on arbitrary time scales, including the bilateral Laplace transform, the Laplace transform of power series, and a deduction of an inverse formula. The author then discusses the generalized convolutions of functions on arbitrary time scales and the shifting problem for existence of solutions. The book moves on to cover boundary value problems and initial boundary value problems for some classes Riemann-Liouville fractional dynamic equations.
Autorenporträt
Svetlin G. Georgiev, Ph.D., is an Assistant Professor in the Faculty of Mathematics and Informatics at Sofia University. He was previously affiliated with Sorbonne University. He is the author of several books, including Real Quaternion Calculus Handbook, Theory of Distributions, Fractional Dynamic Calculus and Fractional Dynamic Equations on Time Scales, Fuzzy Dynamic Equations, Dynamic Inclusions and Optimal Control Problems on Time Scales, and Functional Dynamic Equations on Time Scales, published by Springer Nature. His current research interests include harmonic analysis, functional analysis, partial differential equations, ordinary differential equations, Clifford and quaternion analysis, integral equations, and dynamic calculus on time scales.