These seismic vibration control systems are connected using braces in series and installed with pins to the building structure, enabling installation with little impact on the building structure. This book details testing, analysis and case studies of dampers at braced positions and also exposed to small amplitude vibration.
These seismic vibration control systems are connected using braces in series and installed with pins to the building structure, enabling installation with little impact on the building structure. This book details testing, analysis and case studies of dampers at braced positions and also exposed to small amplitude vibration.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Osamu Takahashi is a Professor at Tokyo University of Science, founder of Science Kozo Inc., and an advisor to the New International Structural design & engineering Challenge Association, in Japan. Atsuki Yokoyama works in the Research and Development department of Sanwa Tekki Corporation and has a PhD in Engineering from Tokyo University of Science.
Inhaltsangabe
Part 1. Development and Analytical Modeling of Braced Oil Dampers for Buildings. 1. Introduction. 2. Development of an oil damper for buildings considering damping characteristics and various dependencies. 3. Analytical model of a single building oil damper. 4. Damping characteristics and analytical model of brace-type oil damper. 5. Evaluation of vibration damping performance of actual building using brace-type oil damper and confirmation experiment. 6. Analytical model and verification of building oil damper under small amplitude. 7. Conclusion to Part 1. Appendix 1. Example of implementation in a high-rise building (office building, Atago 2-chome Project (tentative name)). Appendix 2. Example of implementation in a reinforced building (Aizu-Tajima Joint Government Building, Fukushima Prefecture). Part 2. Development of the oil damper stiffness for architectural vibration control and experimental research on structural characterization. 8. Preface. 9. Configuration and Characteristics of Stiffness-Supported Oil Dampers. 10. Analysis Model for Stiffness-Supported Oil Dampers. 11. Examination Involving Time History Response Analysis Based On Single Degree-of-Freedom Model. 12. Converted Is and q Values of Building Incorporating Stiffness-Supported Oil Dampers. 13. Conclusion to Part 2. Appendix 3. The Low-Loss Viscoelastic Material's Dependence on Temperature and Vibration Frequency.
Part 1. Development and Analytical Modeling of Braced Oil Dampers for Buildings. 1. Introduction. 2. Development of an oil damper for buildings considering damping characteristics and various dependencies. 3. Analytical model of a single building oil damper. 4. Damping characteristics and analytical model of brace-type oil damper. 5. Evaluation of vibration damping performance of actual building using brace-type oil damper and confirmation experiment. 6. Analytical model and verification of building oil damper under small amplitude. 7. Conclusion to Part 1. Appendix 1. Example of implementation in a high-rise building (office building, Atago 2-chome Project (tentative name)). Appendix 2. Example of implementation in a reinforced building (Aizu-Tajima Joint Government Building, Fukushima Prefecture). Part 2. Development of the oil damper stiffness for architectural vibration control and experimental research on structural characterization. 8. Preface. 9. Configuration and Characteristics of Stiffness-Supported Oil Dampers. 10. Analysis Model for Stiffness-Supported Oil Dampers. 11. Examination Involving Time History Response Analysis Based On Single Degree-of-Freedom Model. 12. Converted Is and q Values of Building Incorporating Stiffness-Supported Oil Dampers. 13. Conclusion to Part 2. Appendix 3. The Low-Loss Viscoelastic Material's Dependence on Temperature and Vibration Frequency.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826