Richard Huntsinger (Berkeley University of California)
Business Analytics
Methods and Cases for Data-Driven Decisions
Richard Huntsinger (Berkeley University of California)
Business Analytics
Methods and Cases for Data-Driven Decisions
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Business analytics is about leveraging data analysis and analytical modeling methods to achieve business objectives. Suitable for senior and graduate students in business or data science, this innovative text presents methods in an intuitive fashion and backs up business applications with an approachable level of mathematical rigor.
Andere Kunden interessierten sich auch für
- Artificial Intelligence for Business55,99 €
- Artificial Intelligence for Business168,99 €
- Eric SiegelThe AI Playbook22,99 €
- Machine Learning for Business Analytics71,99 €
- Chander Velu (University of Cambridge)Business Model Innovation33,99 €
- The Business of Healthcare Innovation52,99 €
- Shlomo Ben-HurThe Business of Corporate Learning67,99 €
-
-
-
Business analytics is about leveraging data analysis and analytical modeling methods to achieve business objectives. Suitable for senior and graduate students in business or data science, this innovative text presents methods in an intuitive fashion and backs up business applications with an approachable level of mathematical rigor.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 700
- Erscheinungstermin: 2. Januar 2025
- Englisch
- Abmessung: 251mm x 201mm x 31mm
- Gewicht: 1484g
- ISBN-13: 9781009060790
- ISBN-10: 1009060791
- Artikelnr.: 71643385
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Seitenzahl: 700
- Erscheinungstermin: 2. Januar 2025
- Englisch
- Abmessung: 251mm x 201mm x 31mm
- Gewicht: 1484g
- ISBN-13: 9781009060790
- ISBN-10: 1009060791
- Artikelnr.: 71643385
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Dr. Richard Huntsinger is an author, professor, expert witness, Silicon Valley entrepreneur, Fortune 500 R&D executive, and management consultant with broad international business and technology experience leading programs in data analytics, process automation, and enterprise software development. He now serves as Faculty Director and Distinguished Teaching Fellow at the University of California, Berkeley, where he lectures and oversees research on data strategy and data science applied to business, law, and public policy.
Executive Overview
1. Data and Decisions
1.1 Learning Objectives
1.2 Introduction
1.3 Data-to-Decision Process Model
1.4 Decision Models
1.5 Sensitivity Analysis
2. Data Preparation
2.1 Learning Objectives
2.2 Data Objects
2.3 Selection
2.4 Amalgamation
2.5 Synthetic Variables
2.6 Normalization
2.7 Dummy Variables
2.8 CASE High-Tech Stocks
3. Data Exploration
3.1 Learning Objectives
3.2 Descriptive Statistics
3.3 Similarity
3.4 Cross-Tabulation
3.5 Data Visualization
3.6 Kernel Density Estimation
3.7 CASE Fundraising Strategy
3.8 CASE Iowa Liquor Sales
4. Data Transformation
4.1 Learning Objectives
4.2 Balance
4.3 Imputation
4.4 Alignment
4.5 Principal Component Analysis
4.6 CASE Loan Portfolio
5. Classification I
5.1 Learning Objectives
5.2 Classification Methodology
5.3 Classifier Evaluation
5.4 k-Nearest Neighbors
5.5 Logistic Regression
5.6 Decision Tree
5.7 CASE Loan Portfolio Revisited
6. Classification II
6.1 Learning Objectives
6.2 Naive Bayes
6.3 Support Vector Machine
6.4 Neural Network
6.5 CASE Telecom Customer Churn
6.6 CASE Truck Fleet Maintenance
7. Classification III
7.1 Learning Objectives
7.2 Multinomial Classification
7.3 CASE Facial Recognition
7.4 CASE Credit Card Fraud
8. Regression
8.1 Learning Objectives
8.2 Regression Methodology
8.3 Regressor Evaluation
8.4 Linear Regression
8.5 Regression Versions
8.6 CASE Call Center Scheduling
9. Ensemble Assembly
9.1 Learning Objectives
9.2 Bagging
9.3 Boosting
9.4 Stacking
10. Cluster Analysis
10.1 Learning Objectives
10.2 Cluster Analysis Methodology
10.3 Cluster Model Evaluation
10.4 k-Means
10.5 Hierarchical Agglomeration
10.6 Gaussian Mixture
10.7 CASE Fortune 500 Diversity
10.8 CASE Music Market Segmentation
11. Special Data Types
11.1 Learning Objectives
11.2 Text Data
11.3 Time Series Data
11.4 Network Data
11.5 PageRank for Network Data
11.6 Collaborative Filtering for Network Data
11.7 CASE Deceptive Hotel Reviews
11.8 CASE Targeted Marketing.
1. Data and Decisions
1.1 Learning Objectives
1.2 Introduction
1.3 Data-to-Decision Process Model
1.4 Decision Models
1.5 Sensitivity Analysis
2. Data Preparation
2.1 Learning Objectives
2.2 Data Objects
2.3 Selection
2.4 Amalgamation
2.5 Synthetic Variables
2.6 Normalization
2.7 Dummy Variables
2.8 CASE High-Tech Stocks
3. Data Exploration
3.1 Learning Objectives
3.2 Descriptive Statistics
3.3 Similarity
3.4 Cross-Tabulation
3.5 Data Visualization
3.6 Kernel Density Estimation
3.7 CASE Fundraising Strategy
3.8 CASE Iowa Liquor Sales
4. Data Transformation
4.1 Learning Objectives
4.2 Balance
4.3 Imputation
4.4 Alignment
4.5 Principal Component Analysis
4.6 CASE Loan Portfolio
5. Classification I
5.1 Learning Objectives
5.2 Classification Methodology
5.3 Classifier Evaluation
5.4 k-Nearest Neighbors
5.5 Logistic Regression
5.6 Decision Tree
5.7 CASE Loan Portfolio Revisited
6. Classification II
6.1 Learning Objectives
6.2 Naive Bayes
6.3 Support Vector Machine
6.4 Neural Network
6.5 CASE Telecom Customer Churn
6.6 CASE Truck Fleet Maintenance
7. Classification III
7.1 Learning Objectives
7.2 Multinomial Classification
7.3 CASE Facial Recognition
7.4 CASE Credit Card Fraud
8. Regression
8.1 Learning Objectives
8.2 Regression Methodology
8.3 Regressor Evaluation
8.4 Linear Regression
8.5 Regression Versions
8.6 CASE Call Center Scheduling
9. Ensemble Assembly
9.1 Learning Objectives
9.2 Bagging
9.3 Boosting
9.4 Stacking
10. Cluster Analysis
10.1 Learning Objectives
10.2 Cluster Analysis Methodology
10.3 Cluster Model Evaluation
10.4 k-Means
10.5 Hierarchical Agglomeration
10.6 Gaussian Mixture
10.7 CASE Fortune 500 Diversity
10.8 CASE Music Market Segmentation
11. Special Data Types
11.1 Learning Objectives
11.2 Text Data
11.3 Time Series Data
11.4 Network Data
11.5 PageRank for Network Data
11.6 Collaborative Filtering for Network Data
11.7 CASE Deceptive Hotel Reviews
11.8 CASE Targeted Marketing.
Executive Overview
1. Data and Decisions
1.1 Learning Objectives
1.2 Introduction
1.3 Data-to-Decision Process Model
1.4 Decision Models
1.5 Sensitivity Analysis
2. Data Preparation
2.1 Learning Objectives
2.2 Data Objects
2.3 Selection
2.4 Amalgamation
2.5 Synthetic Variables
2.6 Normalization
2.7 Dummy Variables
2.8 CASE High-Tech Stocks
3. Data Exploration
3.1 Learning Objectives
3.2 Descriptive Statistics
3.3 Similarity
3.4 Cross-Tabulation
3.5 Data Visualization
3.6 Kernel Density Estimation
3.7 CASE Fundraising Strategy
3.8 CASE Iowa Liquor Sales
4. Data Transformation
4.1 Learning Objectives
4.2 Balance
4.3 Imputation
4.4 Alignment
4.5 Principal Component Analysis
4.6 CASE Loan Portfolio
5. Classification I
5.1 Learning Objectives
5.2 Classification Methodology
5.3 Classifier Evaluation
5.4 k-Nearest Neighbors
5.5 Logistic Regression
5.6 Decision Tree
5.7 CASE Loan Portfolio Revisited
6. Classification II
6.1 Learning Objectives
6.2 Naive Bayes
6.3 Support Vector Machine
6.4 Neural Network
6.5 CASE Telecom Customer Churn
6.6 CASE Truck Fleet Maintenance
7. Classification III
7.1 Learning Objectives
7.2 Multinomial Classification
7.3 CASE Facial Recognition
7.4 CASE Credit Card Fraud
8. Regression
8.1 Learning Objectives
8.2 Regression Methodology
8.3 Regressor Evaluation
8.4 Linear Regression
8.5 Regression Versions
8.6 CASE Call Center Scheduling
9. Ensemble Assembly
9.1 Learning Objectives
9.2 Bagging
9.3 Boosting
9.4 Stacking
10. Cluster Analysis
10.1 Learning Objectives
10.2 Cluster Analysis Methodology
10.3 Cluster Model Evaluation
10.4 k-Means
10.5 Hierarchical Agglomeration
10.6 Gaussian Mixture
10.7 CASE Fortune 500 Diversity
10.8 CASE Music Market Segmentation
11. Special Data Types
11.1 Learning Objectives
11.2 Text Data
11.3 Time Series Data
11.4 Network Data
11.5 PageRank for Network Data
11.6 Collaborative Filtering for Network Data
11.7 CASE Deceptive Hotel Reviews
11.8 CASE Targeted Marketing.
1. Data and Decisions
1.1 Learning Objectives
1.2 Introduction
1.3 Data-to-Decision Process Model
1.4 Decision Models
1.5 Sensitivity Analysis
2. Data Preparation
2.1 Learning Objectives
2.2 Data Objects
2.3 Selection
2.4 Amalgamation
2.5 Synthetic Variables
2.6 Normalization
2.7 Dummy Variables
2.8 CASE High-Tech Stocks
3. Data Exploration
3.1 Learning Objectives
3.2 Descriptive Statistics
3.3 Similarity
3.4 Cross-Tabulation
3.5 Data Visualization
3.6 Kernel Density Estimation
3.7 CASE Fundraising Strategy
3.8 CASE Iowa Liquor Sales
4. Data Transformation
4.1 Learning Objectives
4.2 Balance
4.3 Imputation
4.4 Alignment
4.5 Principal Component Analysis
4.6 CASE Loan Portfolio
5. Classification I
5.1 Learning Objectives
5.2 Classification Methodology
5.3 Classifier Evaluation
5.4 k-Nearest Neighbors
5.5 Logistic Regression
5.6 Decision Tree
5.7 CASE Loan Portfolio Revisited
6. Classification II
6.1 Learning Objectives
6.2 Naive Bayes
6.3 Support Vector Machine
6.4 Neural Network
6.5 CASE Telecom Customer Churn
6.6 CASE Truck Fleet Maintenance
7. Classification III
7.1 Learning Objectives
7.2 Multinomial Classification
7.3 CASE Facial Recognition
7.4 CASE Credit Card Fraud
8. Regression
8.1 Learning Objectives
8.2 Regression Methodology
8.3 Regressor Evaluation
8.4 Linear Regression
8.5 Regression Versions
8.6 CASE Call Center Scheduling
9. Ensemble Assembly
9.1 Learning Objectives
9.2 Bagging
9.3 Boosting
9.4 Stacking
10. Cluster Analysis
10.1 Learning Objectives
10.2 Cluster Analysis Methodology
10.3 Cluster Model Evaluation
10.4 k-Means
10.5 Hierarchical Agglomeration
10.6 Gaussian Mixture
10.7 CASE Fortune 500 Diversity
10.8 CASE Music Market Segmentation
11. Special Data Types
11.1 Learning Objectives
11.2 Text Data
11.3 Time Series Data
11.4 Network Data
11.5 PageRank for Network Data
11.6 Collaborative Filtering for Network Data
11.7 CASE Deceptive Hotel Reviews
11.8 CASE Targeted Marketing.